题目内容

13.如图,PA、PB、CD是⊙O的切线,切点分别是A、B、E,CD分别交PA、PB于C、D两点,若∠APB=60°,则∠COD的度数(  )
A.50°B.60°C.70°D.75°

分析 连接AO,BO,OE由切线的性质可得∠PAO=∠PBO=90°,结合已知条件和四边形的内角和为360°可求出∠AOB的度数,再由切线长定理即可求出∠COD的度数.

解答 解:
连接AO,BO,OE,
∵PA、PB是⊙O的切线,
∴∠PAO=∠PBO=90°,
∵∠APB=60°,
∴∠AOB=360°-2×90°-60°=120°,
∵PA、PB、CD是⊙O的切线,
∴∠ACO=∠ECO,∠DBO=∠DEO,
∴∠AOC=∠EOC,∠EOD=∠BOD,
∴∠COD=∠COE+∠EOD=$\frac{1}{2}$∠AOB=60°.
故选B.

点评 本题考查了切线的性质及切线长定理,解答本题的关键是熟练掌握:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网