题目内容
3.解方程:(1)$\frac{1}{x-2}$=$\frac{1-x}{2-x}$-3
(2)$\frac{2}{{x}^{2}-4}$+$\frac{x}{x-2}$=1.
分析 两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
解答 解:(1)去分母得:1=x-1-3x+6,
移项合并得:2x=4,
解得:x=2,
经检验x=2是增根,分式方程无解;
(2)去分母得:2+x(x+2)=x2-4,
解得:x=-3,
经检验x=-3是分式方程的解.
点评 此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
练习册系列答案
相关题目
11.已知⊙O的半径为3cm,点P是直线l上一点,OP的长为4cm,则直线l与⊙O的位置关系是( )
| A. | 相交 | B. | 相切 | ||
| C. | 相离 | D. | 以上三种都有可能 |
18.下列各图中,是轴对称图形的是( )
| A. | B. | C. | D. |
8.方程组$\left\{\begin{array}{l}{2x-y=5}\\{x-2y=1}\end{array}\right.$的解是( )
| A. | $\left\{\begin{array}{l}{x=1}\\{y=3}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x=3}\\{y=1}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$ |
12.若一组数据5,-3,x,0,-1的极差是11,那么x的值为( )
| A. | -6 | B. | 8 | C. | 16 | D. | -6或8 |
13.
如图,PA、PB、CD是⊙O的切线,切点分别是A、B、E,CD分别交PA、PB于C、D两点,若∠APB=60°,则∠COD的度数( )
| A. | 50° | B. | 60° | C. | 70° | D. | 75° |