题目内容
18.我们这样来探究二次根式$\sqrt{{a}^{2}}$的结果,当a>0时,如a=3,则$\sqrt{{3}^{2}}$=3,此时$\sqrt{{a}^{2}}$的结果是a本身;当a=0时,$\sqrt{{0}^{2}}$=0.此时$\sqrt{{a}^{2}}$的结果是零;当a<0时,如a=-3,则$\sqrt{(-3)^{2}}$=-(-3)=3,此时$\sqrt{{a}^{2}}$的结果是a的相反数.这种分析问题的方法所体现的数学思想是( )| A. | 分类讨论 | B. | 数形结合 | C. | 公理化 | D. | 转化 |
分析 根据二次根式的性质,可得答案.
解答 解:这样来探究二次根式$\sqrt{{a}^{2}}$的结果,当a>0时,如a=3,则$\sqrt{{3}^{2}}$=3,此时$\sqrt{{a}^{2}}$的结果是a本身;当a=0时,$\sqrt{{0}^{2}}$=0.此时$\sqrt{{a}^{2}}$的结果是零;当a<0时,如a=-3,则$\sqrt{(-3)^{2}}$=-(-3)=3,此时$\sqrt{{a}^{2}}$的结果是a的相反数.这种分析问题的方法所体现的数学思想是分类讨论,
故选:A.
点评 本题考查了二次根式的性质,对于不同情况进行分类解决是分类讨论,注意分类是不能重复,不能遗漏.
练习册系列答案
相关题目
8.方程组$\left\{\begin{array}{l}{2x-y=5}\\{x-2y=1}\end{array}\right.$的解是( )
| A. | $\left\{\begin{array}{l}{x=1}\\{y=3}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x=3}\\{y=1}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$ |
13.
如图,PA、PB、CD是⊙O的切线,切点分别是A、B、E,CD分别交PA、PB于C、D两点,若∠APB=60°,则∠COD的度数( )
| A. | 50° | B. | 60° | C. | 70° | D. | 75° |
3.$\frac{2}{5}$xm+1yn-2与-2x2y4是同类项,则m+n=( )
| A. | 2 | B. | 4 | C. | 5 | D. | 7 |