题目内容

7.小明坐于堤边垂钓,如图,河堤AC的坡角为30°,AC长2$\sqrt{3}$,钓竿AO的倾斜角∠ODC是60°,其长OA为5米,若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离.

分析 先根据三角形内角和定理求出∠CAD=180°-∠ODB-∠ACD=90°,解Rt△ACD,得出AD=AC•tan∠ACD=2米,CD=2AD=3米,再证明△BOD是等边三角形,得到BD=OD=OA+AD=7米,然后根据BC=BD-CD即可求出浮漂B与河堤下端C之间的距离.

解答 解:∵AO的倾斜角是60°,
∴∠ODB=60°.
∵∠ACD=30°,
∴∠CAD=180°-∠ODB-∠ACD=90°.
在Rt△ACD中,AD=AC•tan∠ACD=2$\sqrt{3}$×$\frac{\sqrt{3}}{3}$=2(米),
∴CD=2AD=4米,
又∵∠O=60°,
∴△BOD是等边三角形,
∴BD=OD=OA+AD=2+5=7(米),
∴BC=BD-CD=7-4=3(米).
答:浮漂B与河堤下端C之间的距离为3米.

点评 本题考查了解直角三角形的应用,解答本题的关键是根据所给的倾斜角构造直角三角形,利用三角函数的知识求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网