题目内容

5.阅读下面材料:
小明遇到这样一个问题:如图1,在△ABC中,D为BC中点,E、F分别为AB、AC上一点,且ED⊥DF,求证:BE+CF>EF.
小明发现,延长FD到点H,使DH=FD,连结BH、EH,构造△BDH和△EFH,通过证明△BDH与△CDF全等、△EFH为等腰三角形,利用△BEH使问题得以解决(如图2).
参考小明思考问题的方法,解决问题:
如图3,在矩形ABCD中,O为对角线AC中点,将矩形ABCD翻折,使点B恰好与点O重合,EF为折痕,猜想EF、AE、FC之间的数量关系?并证明你的猜想.

分析 猜想:EF2=AE2+CF2,延长EO交CD于点H,连结FH,首先证明△AEO≌△CHO,进而可得EO=HO,CH=AE,由折叠的性质可得△EFO≌△EFB,所以∠EOF=∠B=90°,继而在△FCH中,由勾股定理得FH2=CH2+FC2,即EF2=AE2+CF2问题得证.

解答 解:
猜想:EF2=AE2+CF2
理由如下:延长EO交CD于点H,连结FH.
∵四边形ABCD是矩形
∴AB∥DC.∠B=90°
∴∠EAO=∠HCO.
∵O为对角线AC中点,
∴AO=CO.
∵∠BOE=∠COH,
∴△AEO≌△CHO.
∴EO=HO,CH=AE,
由题意可知△EFO≌△EFB.
∴∠EOF=∠B=90°.
∴OF垂直平分EH.
∴FH=EF
在△FCH中,由勾股定理得FH2=CH2+FC2
∴EF2=AE2+CF2

点评 本题考查了全等三角形的判定和性质、矩形的性质勾股定理的运用以及折叠的性质,解题的关键是正确条件辅助线构造全等三角形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网