题目内容


如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.

(1)求证:四边形AEBD是矩形.

(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.


【解析】(1)∵点O为AB的中点,连接DO并延长到点E,使OE=OD,

∴四边形AEBD是平行四边形,

∵AB=AC,AD是△ABC的角平分线,

∴AD⊥BC,∴∠ADB=90°,

∴平行四边形AEBD是矩形.即四边形AEBD是矩形.

(2)当∠BAC=90°时,矩形AEBD是正方形.理由:

∵∠BAC=90°,AB=AC,AD是△ABC的角平分线,

∴AD=BD=CD,

∵由(1)得四边形AEBD是矩形,

∴矩形AEBD是正方形.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网