题目内容
【题目】y=x2+(1﹣a)x+1是关于x的二次函数,当x的取值范围是1≤x≤3时,y在x=1时取得最大值,则实数a的取值范围是( )
A. a≤﹣5B. a≥5C. a=7D. a≥7
【答案】B
【解析】
由于二次函数的顶点坐标不能确定,故应分对称轴不在1≤x≤3和对称轴在1≤x≤3内两种情况进行解答.
解:第一种情况:
当二次函数的对称轴不在1≤x≤3内时,此时,对称轴一定在1≤x≤3的右边,函数方能在这个区域取得最大值,
x=
≥3,即a≥7,
第二种情况:
当对称轴在1≤x≤3内时,对称轴一定是在区间1≤x≤3的中点的右边,因为如果在中点的左边的话,就是在x=3的地方取得最大值,即:
x=
,即a≥5(此处若a取5的话,函数就在1和3的地方都取得最大值)
综合上所述a≥5.
故选:B.
练习册系列答案
相关题目