题目内容
(1)画出△ABC的高AD;
(2)画出△ABC的角平分线AE;
(3)根据你所画的图形求∠DAE的度数.
考点:作图—复杂作图
专题:
分析:(1)过A点作AD⊥BC于D,AD就是所求的高;
(2)以点A为圆心,以任意长为半径画弧,交AB,AC于两点,分别以这两点为圆心,大于这两点的距离的一半为半径画弧,在∠CAB的内部交于一点,过这一点及点A作直线交BC于点E,AE就是所求的∠A的平分线;
(3)利用角平分线把一个角平分的性质和高线的性质可得∠DAE的度数.
(2)以点A为圆心,以任意长为半径画弧,交AB,AC于两点,分别以这两点为圆心,大于这两点的距离的一半为半径画弧,在∠CAB的内部交于一点,过这一点及点A作直线交BC于点E,AE就是所求的∠A的平分线;
(3)利用角平分线把一个角平分的性质和高线的性质可得∠DAE的度数.
解答:
解:(1)如图,AD即为所求作的高;
(2)如图,AE即为所求作的角平分线;
(3)在△ABC中,∵∠B=40°,∠C=110°,
∴∠CAB=180°-40°-110°=30°,
∵AE平分∠CAB,
∴∠EAB=
∠CAB=15°,
∵∠AED是△ABE的外角,
∴∠AED=∠B+∠EAB=55°,
∵AD⊥BC,
∴∠ADB=90°,
∴在Rt△ADE中,
∠DAE=90°-∠AED=90°-55°=35°.
(2)如图,AE即为所求作的角平分线;
(3)在△ABC中,∵∠B=40°,∠C=110°,
∴∠CAB=180°-40°-110°=30°,
∵AE平分∠CAB,
∴∠EAB=
| 1 |
| 2 |
∵∠AED是△ABE的外角,
∴∠AED=∠B+∠EAB=55°,
∵AD⊥BC,
∴∠ADB=90°,
∴在Rt△ADE中,
∠DAE=90°-∠AED=90°-55°=35°.
点评:考查三角形的高与角平分线的画法;求三角形同一顶点处的高线与角平分线的夹角注意运用角平分线的性质,高线的性质,以及三角形内角和定理.
练习册系列答案
相关题目