题目内容
【题目】如图,ABCD中,点E,F分别是BC和AD边上的点,AE垂直平分BF,交BF于点P,连接EF,PD.
(1)求证:平行四边形ABEF是菱形;
(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.
![]()
【答案】(1)详见解析;(2)tan∠ADP=
.
【解析】
(1)根据线段垂直平分线的性质和平行四边形的性质即可得到结论;
(2)作PH⊥AD于H,根据四边形ABEF是菱形,∠ABC=60°,AB=4,得到AB=AF=4,∠ABF=∠ADB=30°,AP⊥BF,从而得到PH=
,DH=5,然后利用锐角三角函数的定义求解即可.
(1)证明:∵AE垂直平分BF,
∴AB=AF,
∴∠BAE=∠FAE,
∵四边形ABCD是平行四边形,
∴AD∥BC.
∴∠FAE=∠AEB,
∴∠AEB=∠BAE,
∴AB=BE,
∴AF=BE.
∵AF∥BC,
∴四边形ABEF是平行四边形.
∵AB=BE,
∴四边形ABEF是菱形;
(2)解:作PH⊥AD于H,
∵四边形ABEF是菱形,∠ABC=60°,AB=4,
∴AB=AF=4,∠ABF=∠AFB=30°,AP⊥BF,
∴AP=
AB=2,
∴PH=
,DH=5,
∴tan∠ADP=
=
.
![]()
练习册系列答案
相关题目