题目内容
考点:面积及等积变换
专题:
分析:由E为AC的中点可得到S△PCE=
S△PAC,S△FCE=
S△FAC.由F为BD的中点可得S△ADF=
S△ABD,S△CBF=
S△CBD,S△PBF=
S△PBD,S△CBF=
S△CBD.然后由S△PEF=S△PFC-S△PEC-S△FCE就可得到S△PEF与S四边形ABCD的关系,从而解决问题.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
解答:
解:∵E为AC的中点,
∴S△PAE=S△PCE=
S△PAC,S△FAE=S△FCE=
S△FAC.
∵F为BD的中点,
∴S△ADF=S△ABF=
S△ABD,S△CDF=S△CBF=
S△CBD,
S△PDF=S△PBF=
S△PBD,S△CDF=S△CBF=
S△CBD.
∴S△PEF=S△PFC-S△PEC-S△FCE
=S△PBF+S△CBF-S△PEC-S△FCE
=
S△PBD+
S△CBD-
S△PAC-
S△FAC
=
(S△PBD+S△CBD-S△PAC-S△FAC)
=
(S△AFD+S△CFD)
=
(
S△ADB+
S△CBD)
=
S四边形ABCD,
∴S四边形ABCD=4S△PEF.
故答案为:4.
∴S△PAE=S△PCE=
| 1 |
| 2 |
| 1 |
| 2 |
∵F为BD的中点,
∴S△ADF=S△ABF=
| 1 |
| 2 |
| 1 |
| 2 |
S△PDF=S△PBF=
| 1 |
| 2 |
| 1 |
| 2 |
∴S△PEF=S△PFC-S△PEC-S△FCE
=S△PBF+S△CBF-S△PEC-S△FCE
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=
| 1 |
| 2 |
=
| 1 |
| 2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=
| 1 |
| 4 |
∴S四边形ABCD=4S△PEF.
故答案为:4.
点评:本题主要考查了等积变换,充分运用三角形的中线把三角形分成面积相等的两部分是解决本题的关键.
练习册系列答案
相关题目
在实数-3.14,
,π,
,
,0,
,0.1010010001…(每两个1之间的0的个数依次多1)中,无理数的个数是( )
| 2 |
| 3 | 64 |
| ||
| 3 |
| 9 |
| A、2个 | B、3个 | C、4个 | D、5个 |
2x2-3x+1=0用配方法解时正确的配方是( )
A、(x-
| ||||
B、(x-
| ||||
C、(x-
| ||||
D、(x+
|