ÌâÄ¿ÄÚÈÝ
11£®ÏÂÁи÷×éÊýÖµÊÇ·½³Ì2x-y=3µÄ½âµÄÊÇ£¨¡¡¡¡£©| A£® | $\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$ | B£® | $\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$ | C£® | $\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$ | D£® | $\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$ |
·ÖÎö ¸ù¾Ý·½³ÌµÄ½âÂú×ã·½³Ì£¬¿ÉµÃ´ð°¸£®
½â´ð ½â£ºA¡¢x=1£¬2-y=3£¬½âµÃy=-1£¬¶þÔªÒ»´Î·½³ÌµÄ½âÊÇ$\left\{\begin{array}{l}{x=1}\\{y=-1}\end{array}\right.$£¬¹ÊA´íÎó£»
B¡¢x=2£¬4-y=3£¬½âµÃy=1£¬¶þÔªÒ»´Î·½³ÌµÄ½âÊÇ$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$£¬¹ÊBÕýÈ·£»
C¡¢x=1£¬2-y=3£¬½âµÃy=-1£¬¶þÔªÒ»´Î·½³ÌµÄ½âÊÇ$\left\{\begin{array}{l}{x=1}\\{y=-1}\end{array}\right.$£¬¹ÊC´íÎó£»
D¡¢x=2£¬4-y=3£¬½âµÃy=1£¬¶þÔªÒ»´Î·½³ÌµÄ½âÊÇ$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$£¬¹ÊD´íÎó£»
¹ÊÑ¡£ºB£®
µãÆÀ ±¾Ì⿼²éÁ˶þÔªÒ»´Î·½³ÌµÄ½â£¬Ê¹¶þÔªÒ»´Î·½³Ì³ÉÁ¢µÄδ֪ÊýµÃÖª£¬´úÈë¼ìÑé·¨ÊǽâÌâ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
1£®
Èçͼ£¬Æ½ÐÐËıßÐÎABCDÖУ¬PÊDZßADÉϼäÈÎÒâÒ»µã£¨³ýµãA£¬DÍ⣩£¬¡÷ABP£¬¡÷BCP£¬¡÷CDPµÄÃæ»ý·Ö±ðΪS1£¬S2£¬S3£¬ÔòÒ»¶¨³ÉÁ¢µÄÊÇ£¨¡¡¡¡£©
| A£® | S1+S3£¼S2 | B£® | S1+S3£¾S2 | C£® | S1+S3=S2 | D£® | S1+S2=S3 |
19£®Èô|x+y-1|+£¨y+3£©2=0£¬Ôò$\frac{1}{4}$x-2yµÄÖµÊÇ£¨¡¡¡¡£©
| A£® | 1 | B£® | -1 | C£® | 7 | D£® | -7 |
3£®ÏÂÁмÆË㣬¢Ù10=0 ¢Ú2-3=-8 ¢Ûa2n¡Âa2n=a ¢Üa+a2=a3 ¢Ý£¨a+b£©2=a2+b2£¬´íÎóµÄÓУ¨¡¡¡¡£©
| A£® | 5¸ö | B£® | 4¸ö | C£® | 3¸ö | D£® | 2¸ö |