题目内容
已知关于x的一元二次方程mx2﹣(m+2)x+2=0.
(1)证明:不论m为何值时,方程总有实数根;
(2)m为何整数时,方程有两个不相等的正整数根.
(1)证明见解析;(2)m=1. 【解析】试题分析:(1)求出方程根的判别式,利用配方法进行变形,根据平方的非负性证明即可; (2)利用一元二次方程求根公式求出方程的两个根,根据题意求出m的值. (1)证明:△=(m+2)2﹣8m =m2﹣4m+4 =(m﹣2)2, ∵不论m为何值时,(m﹣2)2≥0, ∴△≥0, ∴方程总有实数根; (2)【...
练习册系列答案
相关题目