题目内容
下图为手的示意图,在各个手指间标记字母A.B.C.D.请你按图中箭头所指方
向(即A⇒B⇒C⇒D⇒C⇒B⇒A⇒B⇒C⇒…的方式)从A开始数连续的正整数1,2,3,4…,当数到12时,对应的字母是 ;当字母C第201次出现时,恰好数到的数是 ;当字母C第2
n+1次出现时(n为正整数),恰好数到的数是 (用含n的代数式表示).
![]()
B,603,6n+3.
【解析】
解:前六个字母为一组,后边不断重复,12除以6,由余数来判断是什么字母.每组中C字母出现两次,字母C出现201次就是这组字母出现100次,再加3.字母C出现2n+1次就是这组字母出现n次,再加3.通过对字母观察可知:前六个字母为一组,后边就是这组字母反复出现.当数到12时因为12除以6刚好余数为零,则表示这组字母刚好出现两次,所以最后一个字母应该是B.
当字母C第201次出现时,由于每组字母中C出现两次,则这组字母应该出现10
0次后还要加一次C字母出现,而第一个C字母在第三个出现,所以应该是100×6+3=603.
当字母C第2n+1次出现时,则这组字母应该出现n次后还要加一次C字母出现,所以应该是n×6+3=6n+3.
【难度】较难
练习册系列答案
相关题目