题目内容
计算:
(1)
-
+
+
(2)(3+2
)2-(4+
)(4-
).
(1)
| 2 |
| 12 |
| 8 |
| 48 |
(2)(3+2
| 5 |
| 5 |
| 5 |
考点:二次根式的混合运算
专题:
分析:(1)先把各二次根式化为最简二次根式,然后合并即可;
(2)利用完全平方公式和平方差公式计算.
(2)利用完全平方公式和平方差公式计算.
解答:解:(1)原式=
-2
+2
+4
=3
+2
;
(2)原式=9+12
-(16-5)
=9+12
-9
=12
.
| 2 |
| 3 |
| 2 |
| 3 |
=3
| 2 |
| 3 |
(2)原式=9+12
| 5 |
=9+12
| 5 |
=12
| 5 |
点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.
练习册系列答案
相关题目
已知二次函数y=-(x-6)2+4,下列说法中,错误的是( )
| A、图象开口向下 |
| B、顶点坐标为(6,4) |
| C、当x>6时,y随x的增大而增大 |
| D、对称轴与x轴的交点坐标为(6,0) |
关于x的一元二次方程x2+4x-k=0的根的情况是( )
| A、没有实数根 |
| B、有两个相等的实数根 |
| C、有两个不相等的实数根 |
| D、无法判断 |
下面各式中正确的是( )
| A、am•an=amn |
| B、am+an=a2m |
| C、(am)n=(an)m |
| D、(ab)m=abm |