题目内容

17.如图1是一个长为2a,宽为2b的长方形(a>b),沿图中虚线用剪刀均匀分成四块相同小长方形,然后按图2方式拼成一个大正方形

(1)你认为图2中大正方形的边长为(a+b);小正方形(阴影部分)的边长为(a-b).(用含a、b代数式表示)
(2)仔细观察图2,利用图2中存在的面积关系,直接写出下列三个代数式:(a-b)2,(a+b)2,4ab之间的等量关系
(3)利用(2)中得出的结论解决下面的问题:已知a+b=7,ab=6,求代数式(a-b)的值.

分析 (1)本题可以直接求阴影部分正方形的边长,计算面积;也可以用正方形的面积减去四个小长方形的面积,得阴影部分的面积;
(2)由(1)即可得出三个代数式之间的等量关系;
(3)将a+b=7,ab=6,代入三个代数式之间的等量关系即可求出(a-b)2的值.

解答 解:(1)图2中大正方形的边长为(a+b);小正方形(阴影部分)的边长为(a-b);
(2)三个代数式之间的等量关系是:(a+b)2=(a-b)2+4ab;
(3)(a-b)2=(a+b)2-4ab=25,所以a-b=5;
故答案为:(a+b);(a-b).

点评 本题主要考查公式变形能力,如何准确地确定三个代数式之间的等量关系是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网