题目内容

17.如图,在Rt△ABC与Rt△ADE中,∠ACB=∠AED=90°,∠ABC=∠ADE=30°,连接BD,CE,试确定BD和CE的数量关系,并说明理由.

分析 根据三角形的内角和和直角三角形的性质得到∠EAD=∠CAB=60°,AD=2AE,AB=2AC,推出△EAD∽△CAB,得到$\frac{AE}{AD}=\frac{AC}{AB}$,于是得到△EAC∽△DAB,求得$\frac{BD}{CE}=\frac{AD}{AE}$=2,即可得到结论.

解答 解:BD=2CE,
理由:∵∠ACB=∠AED=90°,∠ABC=∠ADE=30°,
∴∠EAD=∠CAB=60°,AD=2AE,AB=2AC,
∴∠EAC=∠DAB,△EAD∽△CAB,
∴$\frac{AE}{AD}=\frac{AC}{AB}$,
∴△EAC∽△DAB,
∴$\frac{BD}{CE}=\frac{AD}{AE}$=2,
∴BD=2CE.

点评 本题考查了相似三角形的判定和性质,直角三角形的性质,熟练掌握直角三角形的性质是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网