题目内容
10.(1)BE=DC;
(2)BE⊥DC.
分析 (1)由DA⊥BA,CA⊥EA,且AD=AB,AE=AC,利用SAS可判定△DAC≌△BAE,继而可证得BE=DC;
(2)由△DAC≌△BAE,可得∠ACD=∠AEB,继而可证得BE⊥DC.
解答 证明:(1)∵DA⊥BA,CA⊥EA,
∴∠DAB=∠CAE=90°,
∴∠DAC=∠BAE,
在△DAC和△BAE中,
$\left\{\begin{array}{l}{AD=AB}\\{∠DAC=∠BAE}\\{AC=AE}\end{array}\right.$,
∴△DAC≌△BAE(SAS),
∴BE=CD;
(2)∵△DAC≌△BAE,
∴∠ACD=∠AEB,
∵∠AEB+∠BEC+∠ACE=90°,
∴∠ACD+∠ACE+∠BEC=90°,
∴∠CQE=90°,
即BE⊥DC.
点评 此题考查了全等三角形的判定与性质以及等腰直角三角形性质.此题难度适中,注意掌握数形结合思想的应用.
练习册系列答案
相关题目
19.已知在△ABC中,AB=AC=5,BC=6,点D是底边BC上任一点,作DE⊥AB,垂足是点E,作DF⊥AC,垂足是点F,则DE+DF的值是( )
| A. | $\frac{12}{5}$ | B. | $\frac{24}{5}$ | C. | 5 | D. | 6 |