题目内容

7.如图,D、E、F分别是等边△ABC各边上的点,且BD=CE=2,BE=CF.
(1)求证:△DEF是等边三角形;
(2)若∠DEC=150°,求等边△ABC的周长.

分析 (1)由等边三角形的性质易得AB=BC=AC,∠A=∠B=∠C=60°,由已知易得BD=CE=AF,AD=BE=CF,可得△BDE≌△CEF≌△AFD,由全等三角形的性质可得DE=FD=EF,证得结论;
(2)首先由∠DEC=150°,易得∠FEC=90°,可得△ADF、△BED、△CFE均为直角三角形,可得∠CFE=∠ADF=∠BDE=30°,由直角三角形的性质可得CF=AD=BE=2BD=4,可得AB,易得结果.

解答 (1)证明:∵△ABC是等边三角形,
∴AB=BC=AC,∠A=∠B=∠C=60°,
∵BD=CE,BE=CF,
∴BD=CE,BE=CF,
∴BD=CE=AF,AD=BE=CF,
在△BDE与△CEF中,
$\left\{\begin{array}{l}{BD=CE}\\{∠B=∠C}\\{BE=CF}\end{array}\right.$,
∴△BDE≌△CEF(SAS),
∴DE=EF,
同理可得△BDE≌△AFD,
∴DE=FD,
∴DE=FD=EF,
∴△DEF为等边三角形;

(2)解:∵∠DEC=150°,∠DEF=60°,
∴∠FEC=90°,
∴△ADF、△BED、△CFE均为直角三角形,且∠CFE=∠ADF=∠BDE=30°,
∵BD=CE=2,
∴CF=AD=BE=2BD=4,
∴AB=BC=AC=6,
∴等边△ABC的周长为:6×3=18.

点评 本题主要考查了等边三角形的性质及判定和全等三角形的性质及判定,综合利用各定理是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网