题目内容

19.如图,在等边△ABC中,点D、E分别在边BC、AC上,且AE=CD,BE与AD相交于点P,BQ⊥AD于点Q.求证:PQ=$\frac{1}{2}$BP.

分析 根据全等三角形的判定方法SAS可证得△BEC≌△ADB,根据各角的关系及三角形内角、外角和定理可证得∠BPQ=60°,即可得结论.

解答 证明:∵△ABC为等边三角形.
∴AB=AC,∠BAC=∠ACB=60°,
在△BAE和△ACD中,$\left\{\begin{array}{l}{AE=CD}&{\;}\\{∠BAC=∠ACB}&{\;}\\{AB=AC}&{\;}\end{array}\right.$,
∴△BAE≌△ACD(SAS),
∴∠ABE=∠CAD.
∵∠BPQ为△ABP外角,
∴∠BPQ=∠ABE+∠BAD.
∴∠BPQ=∠CAD+∠BAD=∠BAC=60°
∵BQ⊥AD,
∴∠PBQ=30°,
∴PQ=$\frac{1}{2}$BP.

点评 本题主要考查了全等三角形的判定和性质,涉及到等边三角形、直角三角形、三角形内角及外角和定理等知识点,证明三角形全等是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网