题目内容
14.设三角形的三边长分别等于下列各数,能构成直角三角形的是( )| A. | 2,4,6 | B. | 4,5,6 | C. | 5,6,10 | D. | 6,8,10 |
分析 判断是否可以作为直角三角形的三边长,则判断两小边的平方和是否等于最长边的平方即可.
解答 解:A、22+42≠62,不是直角三角形,故此选项错误;
B、42+52≠62,不是直角三角形,故此选项错误;
C、52+62≠102,不是直角三角形,故此选项错误;
D、62+82=102,是直角三角形,故此选项正确.
故选:D.
点评 此题主要考查了勾股定理逆定理,关键是掌握勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.
练习册系列答案
相关题目
5.若ax=3,ay=2,则ax+y的值是( )
| A. | 6 | B. | 5 | C. | 9 | D. | 8 |
9.下列计算错误的是( )
| A. | $\frac{{x}^{3}{y}^{2}}{{x}^{2}{y}^{3}}$=$\frac{x}{y}$ | B. | $\frac{a-b}{b-a}$=-1 | C. | $\frac{2a+b}{a+b}$=2 | D. | $\frac{1}{c}$+$\frac{2}{c}$=$\frac{3}{c}$ |
6.
如图,已知直线AB∥CD,将直角三角尺放在图中所示的位置上,如果∠GEB=130°,那么∠GFD的度数是( )
| A. | 70° | B. | 100° | C. | 130° | D. | 140° |