题目内容
13.| A. | AD是△ABE的角平分线 | B. | BE是△ABD边AD上的中线 | ||
| C. | CH为△ACD边AD上的高 | D. | AH为△ABC的角平分线 |
分析 根据三角形的角平分线、三角形的中线、三角形的高的概念进行判断.
连接三角形的顶点和对边中点的线段即为三角形的中线;
三角形的一个角的角平分线和对边相交,顶点和交点间的线段叫三角形的角平分线;
从三角形的一个顶点向对边引垂线,顶点和垂足间的线段叫三角形的高.
解答 解:A、根据三角形的角平分线的概念,知AG是△ABE的角平分线,故本选项错误;
B、根据三角形的中线的概念,知BG是△ABD的边AD上的中线,故本选项错误;
C、根据三角形的高的概念,知CH为△ACD的边AD上的高,故本选项正确;
D、根据三角形的角平分线的概念,知AD是△ABC的角平分线,故本选项错误.
故选C.
点评 本题考查了三角形的角平分线、三角形的中线、三角形的高的概念,注意:三角形的角平分线、中线、高都是线段,且都是顶点和三角形的某条边相交的交点之间的线段.透彻理解定义是解题的关键.
练习册系列答案
相关题目
18.在平面直角坐标系中,点M(-5,-3m+4)在第三象限,则m的取值范围是( )
| A. | m<$\frac{4}{3}$ | B. | m>-$\frac{4}{3}$ | C. | m>$\frac{4}{3}$ | D. | m<-$\frac{4}{3}$ |