题目内容
【题目】如图,在四边形ABCD中,AD∥BC,DE⊥BC,垂足为点E,连接AC交DE于点F,点G为AF的中点,∠ACD=2∠ACB.若DG=5,EC=1,则DE的长为( )
![]()
A. 2
B. 4C. 2
D.
【答案】C
【解析】
由AD与BC平行,且DE垂直于BC,得到DE垂直于AD,在直角三角形AED中,利用斜边上的中线等于斜边的一半,得到DG=GF,作GH⊥DE,利用三线合一得到GH为角平分线,再由∠ACD=2∠ACB,等量代换得到∠DGF=∠ACD,等角对等边得到DG=DC=5,在直角三角形CDE中,利用勾股定理求出DE的长即可.
解:∵AD∥BC,DE⊥BC,
∴∠ADF=∠DEC=90°,
∵点G是AF的中点,
∴DG=GF,
作GH⊥DE于H,则GH∥BC,
∵∠HGF=∠ACB,
∵∠DGF=2∠HGF,∠ACD=2∠ACB,
∴∠DGF=∠ACD,
∴CD=DG=5,
又∵∠DEC=90°,EC=1,
∴DE=
=2
.
故选:C.
![]()
练习册系列答案
相关题目