题目内容
阅读下列材料:
=
=
-1,
=
=
-
,
=
=2-
,
=
=
-2.读完以上材料,请你计算下列各题:
(1)
=
-3
-3;
(2)
=
-
-
;
(3)
+
+
+…+
=
-1
-1.
| 1 | ||
1+
|
| ||||
(1+
|
| 2 |
| 1 | ||||
|
| ||||||||
(
|
| 3 |
| 2 |
| 1 | ||
|
2-
| ||||
(
|
| 3 |
| 1 | ||
2+
|
| ||||
(2+
|
| 5 |
(1)
| 1 | ||
3+
|
| 10 |
| 10 |
(2)
| 1 | ||||
|
| n+1 |
| n |
| n+1 |
| n |
(3)
| 1 | ||
1+
|
| 1 | ||||
|
| 1 | ||
|
| 1 | ||||
|
| 2011 |
| 2011 |
分析:(1)由已知条件观察分母的变化,可以得出分母是连续两个有理数的算术平方根的和结果是较大与较小两算术平方根的差,即可得出所求答案.
(2)由已知条件观察分母的变化,可以得出分母是连续两个有理数的算术平方根的和结果是较大与较小两算术平方根的差,即可得出所求答案.
(3)根据以上规律求出所有数的和即可.
(2)由已知条件观察分母的变化,可以得出分母是连续两个有理数的算术平方根的和结果是较大与较小两算术平方根的差,即可得出所求答案.
(3)根据以上规律求出所有数的和即可.
解答:解:(1)∵阅读下列材料:
=
=
-1,
=
=
-
,
=
=2-
,
=
=
-2.
∴
=
-3;
(2)故:
=
-
;
(3)
+
+
+…+
,
=
-1+
-
+4-
+…+
-
,
=
-1.…(4分)
故答案为:(1)
-3,(2)
-
,(3)
-1.
| 1 | ||
1+
|
| ||||
(1+
|
| 2 |
| 1 | ||||
|
| ||||||||
(
|
| 3 |
| 2 |
| 1 | ||
|
2-
| ||||
(
|
| 3 |
| 1 | ||
2+
|
| ||||
(2+
|
| 5 |
∴
| 1 | ||
3+
|
| 10 |
(2)故:
| 1 | ||||
|
| n+1 |
| n |
(3)
| 1 | ||
1+
|
| 1 | ||||
|
| 1 | ||
|
| 1 | ||||
|
=
| 2 |
| 3 |
| 2 |
| 3 |
| 2011 |
| 2010 |
=
| 2011 |
故答案为:(1)
| 10 |
| n+1 |
| n |
| 2011 |
点评:此题主要考查了数字变化规律,注意从已知入手,分析数据真正的变化情况,是解决问题的关键.
练习册系列答案
相关题目