ÌâÄ¿ÄÚÈÝ

ÔĶÁÏÂÁвÄÁÏ£º
¡ß
1
1¡Á3
=
1
2
(1-
1
3
)
£»
1
3¡Á5
=
1
2
(
1
3
-
1
5
)
£»
1
5¡Á7
=
1
2
(
1
5
-
1
7
)
£»
1
2003¡Á2005
=
1
2
(
1
2003
-
1
2005
)

¡­
¡à
1
1¡Á3
+
1
3¡Á5
+
1
5¡Á7
+¡­+
1
2003¡Á2005

=
1
2
(1-
1
3
+
1
3
-
1
5
+
1
5
-
1
7
+¡­+
1
2003
-
1
2005
)

½â´ðÏÂÁÐÎÊÌ⣺
£¨1£©ÔÚºÍʽ
1
1¡Á3
+
1
3¡Á5
+
1
5¡Á7
+¡­
ÖУ¬µÚ5ÏîΪ
 
£¬µÚnÏîΪ
 
£¬ÉÏÊöÇóºÍµÄÏë·¨ÊÇ£º½«ºÍʽÖеĸ÷·ÖÊýת»¯ÎªÁ½¸öÊýÖ®²î£¬Ê¹µÃÊ×Ä©Á½ÏîÍâµÄÖмä¸÷Ïî¿ÉÒÔ
 
£¬´Ó¶ø´ïµ½ÇóºÍÄ¿µÄ£®
£¨2£©ÀûÓÃÉÏÊö½áÂÛ¼ÆËã
1
x(x+2)
+
1
(x+2)(x+4)
+
1
(x+4)(x+6)
+¡­+
1
(x+2004)(x+2006)
£®
·ÖÎö£º£¨1£©ÊÇÒ»µÀ¹æÂÉÌ⣬ÿ¸ö¼ÓʽµÄ·ÖĸÊÇÁ½¸öÏàÁ򵀮æÊýµÄ»ý£¬·Ö×Ó¶¼ÊÇ1£¬µÚnÏîµÄ·ÖĸÊÇ£¨2n-1£©£¨2n+1£©£®´Ó¶øÇóµÃ½á¹û£®
£¨2£©ÀûÓÃÔĶÁ²ÄÁϸæËߵķ½·¨ºÍ¹æÂɼÆËã·ÖʽµÄ¼Ó¼õ·¨£®
½â´ð£º½â£º£¨1£©Í¨¹ý¹Û²ì¹æÂɵÃÖªÕâЩʽ×ӵķÖ×Ó¶¼Îª1£¬µÚnÏî¼ÓʽµÄ·ÖĸΪ£¨2n-1£©£¨2n+1£©£¬
¡àµÚ5ÏîΪ
1
9¡Á11
µÚnÏîΪ
1
(2n-1)(2n+1)
£¬Ê¹µÃÊ×Ä©Á½ÏîÍâµÄÖмä¸÷Ïî¿ÉÒÔ»¯Îª0£¬´Ó¶øÇó½â£®

£¨2£©Ô­Ê½=
1
2
(
1
x
-
1
x+2
)+
1
2
(
1
x+2
-
1
x+4
)+¡­+
1
2
(
1
x+2004
-
1
x+2006
)

=
1
2
(
1
x
-
1
x+2
+
1
x+2
-
1
x+4
¡­+
1
x+2004
-
1
x+2006
)

=
1
2
(
1
x
-
1
x+2006
)

=
1003
x(x+2006)
£®
µãÆÀ£º±¾Ì⿼²éÁË·ÖʽµÄ¼Ó¼õ·¨¼ÆË㣬ҪÇóѧÉúͨ¹ýÔĶÁ²ÄÁÏ£¬Ñ°ÕÒ½âÌâµÄ¹æÂɺͷ½·¨ÊÇÒ»µÀÀí½âºÍÔËÓýÏÇ¿µÄ·Öʽ¼Ó¼õ¼ÆËãÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø