题目内容
| 1 |
| 4 |
考点:正方形的性质,全等三角形的判定与性质
专题:证明题
分析:分两种情况探讨:(1)当正方形A1B1C1O边与正方形ABCD的对角线重合时;(2)当转到一般位置时,由题求证△AEO≌△BOF,故两个正方形重叠部分的面积等于三角形ABO的面积,得出结论.
解答:解:(1)当正方形绕点OA1B1C1O绕点O转动到其边OA1,OC1分别于正方形ABCD的两条对角线重合这一特殊位置时,
显然S两个正方形重叠部分=
S正方形ABCD;
(2)当正方形绕点OA1B1C1O绕点O转动到如图位置时.
∵四边形ABCD为正方形,
∴∠OAB=∠OBF=45°,OA=OB
BO⊥AC,即∠AOE+∠EOB=90°,
又∵四边形A′B′C′O为正方形,
∴∠A′OC′=90°,即∠BOF+∠EOB=90°,
∴∠AOE=∠BOF,
在△AOE和△BOF中,
,
∴△AOE≌△BOF(ASA),
∵S两个正方形重叠部分=S△BOE+S△BOF,
又S△AOE=S△BOF
∴S两个正方形重叠部分=SABO=
S正方形ABCD.
综上所知,无论正方形A1B1C1O绕点O怎样转动,两个正方形重叠部分的面积,总等于一个正方形面积的
.
显然S两个正方形重叠部分=
| 1 |
| 4 |
(2)当正方形绕点OA1B1C1O绕点O转动到如图位置时.
∵四边形ABCD为正方形,
∴∠OAB=∠OBF=45°,OA=OB
BO⊥AC,即∠AOE+∠EOB=90°,
又∵四边形A′B′C′O为正方形,
∴∠A′OC′=90°,即∠BOF+∠EOB=90°,
∴∠AOE=∠BOF,
在△AOE和△BOF中,
|
∴△AOE≌△BOF(ASA),
∵S两个正方形重叠部分=S△BOE+S△BOF,
又S△AOE=S△BOF
∴S两个正方形重叠部分=SABO=
| 1 |
| 4 |
综上所知,无论正方形A1B1C1O绕点O怎样转动,两个正方形重叠部分的面积,总等于一个正方形面积的
| 1 |
| 4 |
点评:此题考查正方形的性质,三角形全等的判定与性质,三角形的面积等知识点.
练习册系列答案
相关题目
关于x,y的方程组
的解满足x+y=6,则m的值为( )
|
| A、1 | B、2 | C、3 | D、4 |