题目内容
考点:等腰三角形的性质
专题:
分析:首先由∠OBC=∠OCA得到∠BCO+∠OBC=∠BCO+∠OCA=∠ACB,求出∠ACB的度数,根据三角形的内角和定理即可求出答案.
解答:解:∵AB=AC,
∴∠ABC=∠ACB,
又∵∠OBC=∠OCA,
∴∠ABC+∠ACB=2(∠OBC+∠OCB),
∵∠BOC=110°,
∴∠OBC+∠OCB=70°,
∴∠ABC+∠ACB=140°,
∴∠A=180°-(∠ABC+∠ACB)=40°.
∴∠ABC=∠ACB,
又∵∠OBC=∠OCA,
∴∠ABC+∠ACB=2(∠OBC+∠OCB),
∵∠BOC=110°,
∴∠OBC+∠OCB=70°,
∴∠ABC+∠ACB=140°,
∴∠A=180°-(∠ABC+∠ACB)=40°.
点评:本题主要考查了等腰三角形的性质,三角形的内角和定理等知识点,解此题的关键是证出∠BCO+∠OBC=∠ACB.
练习册系列答案
相关题目
下列现象中:①地下水位逐年下降;②传送带的移动;③方向盘的转动;④水龙头开关的转动;⑤钟摆的运动;⑥荡秋千运动.属于旋转的有( )
| A、2个 | B、3个 | C、4个 | D、5个 |
计算:(-x2)3•(-x)2=( )
| A、x8 |
| B、-x7 |
| C、-x8 |
| D、x7 |