题目内容

1.如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(8,8),将正方形ABCO绕点C逆时针旋转角度α(0°<α<90°),得到正方形CDEF,ED交线段AB于点G,ED的延长线交线段OA于点H,连CH、CG.
(1)求证:△CBG≌△CDG;
(2)求∠HCG的度数;判断线段HG、OH、BG的数量关系,并说明理由;
(3)连结BD、DA、AE、EB得到四边形AEBD,在旋转过程中,四边形AEBD能否为矩形?如果能,请求出点H的坐标;如果不能,请说明理由.

分析 (1)求证全等,观察两个三角形,发现都有直角,而CG为公共边,进而再锁定一条直角边相等即可,因为其为正方形旋转得到,所以边都相等,即结论可证.
(2)根据(1)中三角形全等可以得到对应边、角相等,即BG=DG,∠DCG=∠BCG.同第一问的思路容易发现△CDH≌△COH,也有对应边、角相等,即OH=DH,∠OCH=∠DCH.于是∠GCH为$\frac{1}{2}$四角的和,四角恰好组成直角,所以∠GCH=90°,且容易得到OH+BG=HG.
(3)四边形AEBD若为矩形,则需先为平行四边形,即要对角线互相平分,合适的点只有G为AB中点的时候.由上几问知DG=BG,所以此时同时满足DG=AG=EG=BG,即四边形AEBD为矩形.求H点的坐标,可以设其为(x,0),则OH=x,AH=6-x.而BG为AB的一半,所以DG=BG=AG=3.又由(2),HG=x+3,所以Rt△HGA中,三边都可以用含x的表达式表达,那么根据勾股定理可列方程,进而求出x,推得H坐标.

解答 (1)证明:∵正方形ABCO绕点C旋转得到正方形CDEF,
∴CD=CB,∠CDG=∠CBG=90°.
在Rt△CDG和Rt△CBG中,
$\left\{\begin{array}{l}CD=CB\\ CG=CG\end{array}\right.$,
∴△CDG≌△CBG(HL);

(2)解:∵△CDG≌△CBG,
∴∠DCG=∠BCG,DG=BG.
在Rt△CHO和Rt△CHD中,
∵$\left\{\begin{array}{l}CH=CH\\ OC=CD\end{array}\right.$,
∴△CHO≌△CHD(HL),
∴∠OCH=∠DCH,OH=DH,
∴∠HCG=∠HCD+∠GCD=$\frac{1}{2}$∠OCD+$\frac{1}{2}$∠DCB=$\frac{1}{2}$∠OCB=45°,
∴HG=HD+DG=HO+BG;

(3)解:四边形AEBD可为矩形.
如图,连接BD、DA、AE、EB,四边形AEBD若为矩形,则需先为平行四边形,即要对角线互相平分,合适的点只有G为AB中点的时候.
∵DG=BG,
∴DG=AG=EG=BG,即平行四边形AEBD对角线相等,则其为矩形,
∴当G点为AB中点时,四边形AEBD为矩形.
∵四边形DAEB为矩形,
∴AG=EG=BG=DG.
∵AB=8,
∴AG=BG=4.
设H点的坐标为(x,0),则HO=x
∵OH=DH,BG=DG,
∴HD=x,DG=4.
在Rt△HGA中,
∵HG=x+4,GA=4,HA=8-x,
∴(x+4)2=42+(8-x)2,解得x=$\frac{8}{3}$.
∴H点的坐标为($\frac{8}{3}$,0).

点评 本题考查的是四边形综合题,涉及到三角形全等的相关知识,最后一问属于动点题,解题时一定要先画适当的辅助线将所问图象表示出来,这样思考问题方向感相对明确些,此类题目中前问结论与后问思路往往有着紧密联系,要巧用这个技巧来思考问题,往往事半功倍.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网