题目内容

15.如图,把长方形纸片ABCD沿EF折叠后,使得点D与点B重合,点C落在点C′的位置上.
(1)折叠后,DC的对应线段是BC′,CF的对应线段是FC′;
(2)若AB=8,DE=10,求CF的长度.

分析 (1)根据翻折后的对应点确定出对应线段即可;
(2)在Rt△ABE中由勾股定理可求得AE=6,从而得到AD=16,然后证明BE=BF=10,从而可求得FC=16-10=6.

解答 解:(1)∵点D与点B重合,点C落在点C′的位置上,
∴DC的对应线段是BC′,CF的对应线段是FC′.
故答案为:BC′;FC′.
(2)由翻折的性质可知:DE=BE=10,∠2=∠BEF.
∵AD∥BC,
∴∠2=∠1.
∴∠1=∠BEF.
∴BE=BF=10.
在Rt△ABE中,由勾股定理得:AE=$\sqrt{B{E}^{2}-A{B}^{2}}$=$\sqrt{1{0}^{2}-{8}^{2}}$=6,
∴AD=AE+ED=6+10=16.
∴CF=CB-BF=16-10=6.

点评 本题主要考查的是翻折的性质、勾股定理的应用,证得BE=BF=10是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网