题目内容

如图1,以△ABC的边AB为直径的⊙O交边BC于点E,过点E作⊙O的切线交AC于点D,且ED⊥AC.

(1)试判断△ABC的形状,并说明理由;

(2)如图2,若线段AB、DE的延长线交于点F,∠C=75°,CD=,求⊙O的半径和BF的长

(1)△ABC是等腰三角形,理由见解析; (2)⊙O的半径为2,BF=﹣2 . 【解析】分析:(1)连接OE,根据切线性质得OE⊥DE,与已知中的ED⊥AC得平行,由此得∠1=∠C,再根据同圆的半径相等得∠1=∠B,可得出三角形为等腰三角形; (2)通过作辅助线构建矩形OGDE,再设与半径有关系的边OG=x,通过AB=AC列等量关系式,可求得结论. 本题解析: 【解析...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网