题目内容

16.如图,正方形ABCD的边长为3,E为AD的中点,连接BE、BD、CE,则图中阴影部分的面积是3.

分析 CE与BD相交于F点,如图,由DE∥BC可判断△DEF∽△BCF,则$\frac{EF}{FC}$=$\frac{DF}{BF}$=$\frac{DE}{BC}$=$\frac{1}{2}$,于是利用三角形面积公式可得S△DCF=S△EBF=2S△DEF,而S△CDE=$\frac{9}{4}$,所以S△DCF=S△EBF=$\frac{2}{3}$×$\frac{9}{4}$=$\frac{3}{2}$,然后计算图中阴影部分的面积.

解答 解:CE与BD相交于F点,如图,
∵E为AD的中点,
∴DE=$\frac{3}{2}$,
∵DE∥BC,
∴△DEF∽△BCF,
∴$\frac{EF}{FC}$=$\frac{DF}{BF}$=$\frac{DE}{BC}$=$\frac{1}{2}$,
∴S△DCF=S△EBF=2S△DEF
而S△CDE=$\frac{1}{2}$×3×$\frac{3}{2}$=$\frac{9}{4}$,
∴S△DCF=S△EBF=$\frac{2}{3}$×$\frac{9}{4}$=$\frac{3}{2}$,
∴图中阴影部分的面积=2×$\frac{3}{2}$=3.
故答案为3.

点评 本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.也考查了相似三角形的判定与性质和三角形面积公式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网