题目内容
如图,在凸四边形ABCD中,M为边AB的中点,且MC=MD,分别过C,D两点,作边BC,AD的垂线,设两条垂线的交点为P.
求证:∠PAD=∠PBC.
根据三角形的中位线定理得:MF=
∴四边形MFPE为平行四边形
∴∠MFP=∠MEP,
∵PD⊥AD,PC⊥BC,
∴∠ADP=∠BCP=90°,
∴在Rt△APD与Rt△BPC中,
DF=AF=PF=
∴DF=EM=PF,FM=PE=CE,
∵MC=MD,
∴△MDF≌△CME(SSS),
∴∠DFM=∠MEC,
∴∠DFP=∠CEP,
∴FA=FD,CE=BE,
∴∠DAF=∠FDA,∠ECB=∠CBE,
∴∠DFP=2∠DAP,∠CEP=2∠CBP,
∵∠DFP=∠CEP,
∴∠PAD=∠PBC.
分析:用中位线定理证明,MF=
点评:考查中位线定理在平行四边形中的应用和平行四边形中全等三角形的证明.
练习册系列答案
相关题目