题目内容
反比例函数
图象上有三个点(x1,y1),(x2,y2),(x3,y3),其中x1<x2<0<x3,则y1,y2,y3的大小关系是( )
A. y2<y1<y3 B. y1<y2<y3 C. y3<y1<y2 D. y3<y2<y1
A 【解析】k=6>0,所以反比例函数图像位于一三象限,并且当x<0时,y随着x的增大而减小,所以y2<y1<y3. 故选A. 点睛:已知反比例函数解析式和点的横坐标要比较纵坐标大小,可以数形结合,借助图像的性质进行比较.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )
A.
B.
C.
D. ![]()
如图,⊙O是△ABC的外接圆,∠OCB=40°则∠A的度数等于( )
![]()
A. 60° B. 50° C. 40° D. 30°
查看答案在下列图形中,既是轴对称图形,又是中心对称图形的是( )
A.
B .
C .
D. ![]()
已知反比例函数
,下列结论不正确的是
A.图象必经过点(-1,2) B.y随x的增大而增大
C.图象在第二、四象限内D.若x>1,则y>-2
查看答案在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以每秒1cm的速度移动,同时点Q从点B出发沿BC边向点C以每秒2cm的速度移动P、Q两点在分别到达B、C两点后就停止移动,设两点移动的时间为t秒,回答下列问题:
(1)如图1,当t为几秒时,△PBQ的面积等于5cm2?
(2)如图2,当t=
秒时,试判断△DPQ的形状,并说明理由;
(3)如图3,以Q为圆心,PQ为半径作⊙Q.
①在运动过程中,是否存在这样的t值,使⊙Q正好与四边形DPQC的一边(或边所在的直线)相切?若存在,求出t值;若不存在,请说明理由;
②若⊙Q与四边形DPQC有三个公共点,请直接写出t的取值范围.
![]()
- 题型:单选题
- 难度:简单
解答一个问题后,将结论作为条件之一,提出与原问题有关的新问题,我们把它称为原问题的一个“逆向”问题.例如,原问题是“若矩形的两边长分别为3和4,求矩形的周长”,求出周长等于14后,它的一个“逆向”问题可以是“若矩形的周长为14,且一边长为3,求另一边的长”;也可以是“若矩形的周长为14,求矩形面积的最大值”,等等.
(1)设A=
,B=
,求A与B的积;
(2)提出(1)的一个“逆向”问题,并解答这个问题.
(1)2x+8;(2) 【解析】试题分析:(1)把A和B对应的代数式代入A×B,进行分式的运算,即可得到A与B的积; (2)读懂题意,已知可以改为A×B的积,以及A的值,求B的值. 试题解析:(1) A×B==2x+8; (2)“逆向”问题是:已知A×B=2x+8,A=,求B的值. B=(2x+8)÷()=(2x+8)×=. 考点:分式的混合运算.按要求完成下列各题:
(1)已知实数a、b满足(a+b)2=1,(a﹣b)2=9,求a2+b2﹣ab的值;
(2)已知(2015﹣a)(2016﹣a)=2047,试求(a﹣2015)2+(2016﹣a)2的值.
查看答案请先将下式化简,再选择一个适当的数代入求值.(1﹣
)﹣
÷
.
解方程
(1)
(2)![]()
计算
(1)先化简,再求值:(2x﹣1)(x+2)﹣2x(x+1),x=
.
(2)已知:a+b=4,ab=3,求
a3b+
a2b2+
ab3的值.
因式分【解析】
(1)(a+b)2+6(a+b)+9; (2)(x﹣y)2﹣9(x+y)2;
(3)a2(x﹣y)+b2(y﹣x). (4)(x2-5)2+8(5-x2)+16.
查看答案 试题属性- 题型:解答题
- 难度:中等
如图,为了估计河的宽度,在河的对岸选定一个目标点P,在近岸取点Q和S,使点P,Q,S在一条直线上,且直线PS与河垂直,在过点S且与PS垂直的直线a上选择适当的点T,PT与过点Q且与PS垂直的直线b的交点为R.如果QS=60m,ST=120m,QR=80m,则河的宽度PQ为( )
![]()
A. 40m B. 60m C. 120m D. 180m
C 【解析】由题意得QR||ST,所以=, , 所以选C.已知点P(1,2)在反比例函数
的图象上,过P作
轴的垂线,垂足为M,则△OPM的面积为( )
A. 2 B. 4 C. 8 D. 1
查看答案桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是( )
![]()
A.
B.
C.
D. ![]()
以下判定正确的是( )
A. 若AB⊥BC,则
ABCD是菱形 B. 若AC⊥BD,则
ABCD是正方形
C. 若AC=BD,则
ABCD是矩形 D. 若AB=AD,则
ABCD是正方形
如图是同一时刻学校里一棵树和旗杆的影子,如果树高为3米,测得它的影子长为1.2米,旗杆的高度为5米,则它的影子长为( )
![]()
A. 4米 B. 2米 C. 1.8米 D. 3.6米
查看答案关于
的一元二次方程
的常数项为0,则
的值等于( )
A. 1 B. 2 C. 0或1 D. 0
查看答案 试题属性- 题型:单选题
- 难度:中等
如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于E,交AC于F,点P是⊙A上的一点,且∠EPF=40°,则图中阴影部分的面积是__________(结果保留
)
![]()
如图,反比例函数
和正比例函数y2=k2x 的图象交于A(-1,-3)、B(1,3)两点,若
>k2x,则x的取值范围是___________________.
![]()
已知点A(-1,y1)、B(2,y2)都在双曲线y=
上,且y1>y2,则m的取值范围是______________
若抛物线y=x2-2x-3与x轴分别交于A,B两点,则AB的长为 ______.
查看答案直线y=x+3上有一点P(3,a),则点P关于原点的对称点
为___________.
如图,两个反比例函数
和
的图象分别是l1和l2.设点P在l1上,PC⊥x轴,垂足为C,交l2于点A,PD⊥y轴,垂足为D,交l2于点B,则△PAB的面积为( )
![]()
A. 3 B. 4 C.
D. 5
- 题型:单选题
- 难度:简单
某同学在用描点法画二次函数y=
+bx+c的图象时,列出了下面的表格:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y | … | ﹣11 | ﹣2 | 1 | ﹣2 | ﹣5 | … |
由于粗心,他算错了其中一个y值,则这个错误的数值是( ).
A.﹣11 B.﹣2 C.1 D.﹣5
D. 【解析】试题分析:根据关于对称轴对称的自变量对应的函数值相等,可得答案.由函数图象关于对称轴对称,得(﹣1,﹣2),(0,1),(1,﹣2)在函数图象上,把(﹣1,﹣2),(0,1),(1,﹣2)代入函数解析式,得a-b+c=-2,c=1,a+b+c=-2,解得a=-3,b=0,c=1,所以函数解析式为y=+1,x=2时y=﹣11. 故选:D. 考点:二次函数的图象. ...若圆锥的底面积为16πcm2,母线长为12cm,则它的侧面展开图的圆心角为( )
A. 240° B. 120° C. 180° D. 90°
查看答案已知二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=bx+c和反比例函数y=
在同一平面直角坐标系中的图象大致是( )
![]()
如图,正方形ABCD内接于⊙O,⊙O的直径为
分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD内的概率是( ).
![]()
A.
B.
C.
D.![]()
如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=10,CD=8,那么线段OE的长为( )
![]()
A.6 B.5 C.4 D.3
查看答案反比例函数
图象上有三个点(x1,y1),(x2,y2),(x3,y3),其中x1<x2<0<x3,则y1,y2,y3的大小关系是( )
A. y2<y1<y3 B. y1<y2<y3 C. y3<y1<y2 D. y3<y2<y1
查看答案 试题属性- 题型:单选题
- 难度:中等
如图,已知点B、E、C、F在一条直线上,AB=DF,AC=DE,∠A=∠D.
(1)求证:AC∥DE;
(2)若BF=13,EC=5,求BC的长.
![]()
直线y=kx+4经过点(1,2),求不等式kx+4≥0的解集.
查看答案某校开展“节约每一滴水”活动,为了了解开展活动的一个月以来节约用水的病况,从八年级的400名同学中选出20名同学统计了解各自家庭一个月的节水情况,见下表:
节水(m3) | 0.2 | 0.25 | 0.3 | 0.4 | 0.5 |
家庭数(个) | 2 | 4 | 6 | 7 | 1 |
分别求出这20个家庭节水的中位数和众数.请你估计这400名同学的家庭一个月节约用水的总量大约是多少m3?
查看答案如图,△ABC和△ABD中,∠C=∠D=Rt∠,E是BC边上的中线.请你说明CE=DE的理由.
![]()
如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.
![]()
如果关于x的不等式k﹣x+6>0的正整数解为1、2、3,那么k的取值范围是多少?
查看答案 试题属性- 题型:解答题
- 难度:中等
点M(a,﹣5)与点N(﹣2,b)关于x轴对称,则a+b=________.
3 【解析】试题解析:∵点M(a,-5)与点N(-2,b)关于x轴对称, ∴a=-2.b=5, ∴a+b=-2+5=3.将一副三角尺按如图所示的方式放置,使含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,则∠1的度数是 .
![]()
下列各式①y=0.5x﹣2;②y=|2x|;③3y+5=x;④y2=2x+8中,y是x的函数的有_______ (只填序号)
查看答案看图填空:已知如图,AD⊥BC于D,EG⊥BC于G,∠E=∠1,
求证:AD平分∠BAC.
证明:∵AD⊥BC于D,EG⊥BC于G( 已知 )
∴∠ADC=90°,∠EGC=90°(___________)
∴∠ADC=∠EGC(等量代换)
∴AD∥EG(_____________)
∴∠1=∠2(___________)
∠E=∠3(___________)
又∵∠E=∠1( 已知)
∴∠2=∠3(___________)
∴AD平分∠BAC(___________).
![]()
为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有________条鱼.
查看答案一次函数y=(m2﹣4)x+(1﹣m)和y=(m﹣1)x+m2﹣3的图象与y轴分别交于点P和点Q,若点P与点Q关于x轴对称,则m=________
查看答案 试题属性- 题型:填空题
- 难度:简单
若直线y=3x+6与直线y=2x+4的交点坐标为(a , b),则解为
的方程组是( )
A.
B.
C.
D. ![]()
如图,已知等边△ABC中,D为边AC上一点.
(1)以BD为边作等边△BDE,连接CE,求证:AD=CE;
(2)如果以BD为斜边作Rt△BDE,且∠BDE=30°,连接CE并延长,与AB的延长线交于F点,求证:AD=BF;
![]()
阅读下面的材料,回答问题:
解方程x4-5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:
设x2=y,那么x4=y2,于是原方程可变为y2-5y+4=0 ①,解得y1=1,y2=4.
当y=1时,x2=1,∴x=±1;
当y=4时,x2=4,∴x=±2;
∴原方程有四个根:x1=1,x2=-1,x3=2,x4=-2.
在由原方程得到方程①的过程中,利用换元法达到降次的目的,体现了数学的转化思想,请利用上述方法解方程
![]()
商场某种商品平均每天可销售20件,每件盈利40元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.
(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?此时,每件衬衫盈利多少元?
(2)每件衬衫降价多少元,商场平均每天盈利最多?
查看答案如图,已知R t△ABC,∠ABC=90°,以直角边AB为直径作O,交斜边AC于点D,连结BD.
(1)若AB=3,BC=4,求边BD的长;
(2)取BC的中点E,连结ED,试证明ED与⊙O相切.
![]()
某校团委为积极参与“陶行知杯.全国书法大赛”现场决赛,向学校学生征集书画作品,今年3月份举行了“书画比赛”初赛,初赛成绩评定为A,B,C,D,E五个等级.该校七年级书法班全体学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图.请根据图中信息,解答下列问题.
![]()
(1)该校七年级书法班共有 名学生;扇形统计图中C等级所对应扇形的圆心角等于 度,并补全条形统计图;
(2)A等级的4名学生中有2名男生,2名女生,现从中任意选取2名学生参加“陶行知杯.全国书法大赛”现场决赛,请你用列表法或画树状图的方法,求出恰好选到1名男生和1名女生的概率.
查看答案 试题属性- 题型:单选题
- 难度:简单
在数轴上,点A表示的数是﹣5,点C表示的数是4,若AB=2BC,则点B在数轴上表示的数是( )
A. 1或13 B. 1 C. 9 D. ﹣2或10
A 【解析】试题分析:由于点A表示的数是﹣5,点C表示的数是4,则线段AC的长度为9;又AB=2BC,分两种情况,①点B在C的右边;②B在C的左边. 【解析】 ∵点A表示的数是﹣5,点C表示的数是4, ∴AC=4﹣(﹣5)=9; 又∵AB=2BC, ∴①点B在C的右边,其坐标应为4+9=13; ②B在C的左边,其坐标应为4﹣9×=4﹣3=1. 故点B在数...把方程
去分母正确的是( )
A. 18x+2(2x-1)=18-3(x+1) B. 3x+(2x-1)=3-(x+1)
C. 18x+(2x-1)=18-(x+1) D. 3x+2(2x-1)=3-3(x+1)
查看答案一个长为19cm,宽为18cm的长方形,如果把这个长方形分成若干个正方形要求正方形的边长为正整数,那么该长方形最少可分成正方形的个数( )
A. 5个 B. 6个 C. 7个 D. 8个
查看答案下列四种运算中,结果最大的是( )
A. 1+(﹣2) B. 1﹣(﹣2) C. 1×(﹣2) D. 1÷(﹣2)
查看答案(2016四川省南充市)如果向右走5步记为+5,那么向左走3步记为( )
A. +3 B. ﹣3 C.
D. ![]()
若(a+1)2+|b﹣2|=0,化简a(x2y+xy2)﹣b(x2y﹣xy2)的结果为( )
A.3x2y B.﹣3x2y+xy2 C.﹣3x2y+3xy2 D.3x2y﹣xy2
查看答案 试题属性- 题型:单选题
- 难度:简单