题目内容


如图(1)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.

(1)求证:①△ADC≌△CEB;②DE=AD+BE.

(2)当直线MN绕点C旋转到图(2)的位置时,DE、AD、BE又怎样的关系?并加以证明.


【考点】全等三角形的判定与性质;等腰直角三角形.

【分析】(1)①由已知推出∠ADC=∠BEC=90°,因为∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,推出∠DAC=∠BCE,根据AAS即可得到答案;

②由①得到AD=CE,CD=BE,即可求出答案;

(2)与(1)证法类似可证出∠ACD=∠EBC,能推出△ADC≌△CEB,得到AD=CE,CD=BE,代入已知即可得到答案.

【解答】(1)①证明:∵AD⊥DE,BE⊥DE,

∴∠ADC=∠BEC=90°,

∵∠ACB=90°,

∴∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,

∴∠DAC=∠BCE,

在△ADC和△CEB中,

∴△ADC≌△CEB(AAS).

②证明:由(1)知:△ADC≌△CEB,

∴AD=CE,CD=BE,

∵DC+CE=DE,

∴AD+BE=DE.

(2)证明:∵BE⊥EC,AD⊥CE,

∴∠ADC=∠BEC=90°,

∴∠EBC+∠ECB=90°,

∵∠ACB=90°,

∴∠ECB+∠ACE=90°,

∴∠ACD=∠EBC,

在△ADC和△CEB中,

∴△ADC≌△CEB(AAS),

∴AD=CE,CD=BE,

∴DE=EC﹣CD=AD﹣BE.

【点评】本题主要考查了邻补角的意义,全等三角形的性质和判定等知识点,能根据已知证出符合全等的条件是解此题的关键,题型较好,综合性比较强.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网