题目内容
如图1,边长为4的正方形ABCD中,点E在AB边上(不与点A,B重合),点F在BC边上(不与点B,C重合).
第一次操作:将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G;
第二次操作:将线段FG绕点G顺时针旋转,当点F落在正方形上时,记为点H;
依次操作下去…
(1)图2中的△EFD是经过两次操作后得到的,其形状为 ,求此时线段EF的长;
(2)若经过三次操作可得到四边形EFGH.
①请判断四边形EFGH的形状为 ,此时AE与BF的数量关系是 ;
②以①中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x的函数关系式及面积y的取值范围;
(3)若经过多次操作可得到首尾顺次相接的多边形,其最大边数是多少?它可能是正多边形吗?如果是,请直接写出其边长;如果不是,请说明理由.
![]()
解:(1)如题图2,由旋转性质可知EF=DF=DE,则△DEF为等边三角形.
在Rt△ADE与Rt△CDF中,
![]()
∴Rt△ADE≌Rt△CDF(HL)
∴AE=CF.
设AE=CF=x,则BE=BF=4﹣x
∴△BEF为等腰直角三角形.
∴EF=
BF=
(4﹣x).
∴DE=DF=EF=
(4﹣x).
在Rt△ADE中,由勾股定理得:AE2+AD2=DE2,即:x+42=[
(4﹣x]2,
解得:x1=8﹣4
,x2=8+4
(舍去)
∴EF=
(4﹣x)=4
﹣4
.
DEF的形状为等边三角形,EF的长为4
﹣4
.
(2)①四边形EFGH的形状为正方形,此时AE=BF.理由如下:
依题意画出图形,如答图1所示:
![]()
由旋转性质可知,EF=FG=GH=HE,∴四边形EFGH的形状为正方形.
∵∠1+∠2=90°,∠2+∠3=90°,
∴∠1=∠3.
∵∠3+∠4=90°,∠2+∠3=90°,
∴∠2=∠4.
在△
AEH与△BFE中,
![]()
∴△AEH≌△BFE(ASA)
∴AE=BF.
②利用①中结论,易证△AEH、△BFE、△CGF、△DHG均为全等三角形,
∴BF=CG=DH=AE=x,AH=BE=CF=DG=4﹣x.
∴y=S正方形ABCD﹣4S△AEH=4×4﹣4×
x(4﹣x)=2x2﹣8x+16.
∴y=2x2﹣8x+16(0<x<4)
∵y=2x2﹣8x+16=2(x﹣2)2+8,
∴当x=2时,y取得最小值8;当x=0时,y=16,
∴y的取值范围为:8≤y<16.
(3)经过多次操作可得到首尾顺次相接的多边形,其最大边数是8,它可能为正多边形,边长为4
﹣4.
如答图2所示,粗线部分是由线段EF经过7次操作所形成的正八边形.
![]()
设边长EF=FG=x,则BF=CG=
x,
BC=BF+FG+CG=
x+x+
x=4,解得:x=4
﹣4.
下列几何体中,主视图是三角形的是( )
|
| A. |
| B. |
| C. |
| D. |
|
已知反比例函数y=
的图象如图,则二次函数y=2kx2﹣4x+k2的图象大致为( )
![]()
|
| A. |
| B. |
| C. |
| D. |
|
如图中几何体的俯视图是( )
![]()
|
| A. |
| B. |
| C. |
| D. |
|