题目内容

5.如图,在⊙O中,AC与BD是圆的直径,BE⊥AC,CF⊥BD,垂足分别为E、F
(1)四边形ABCD是什么特殊的四边形?请判断并说明理由;
(2)求证:BE=CF.

分析 (1)由圆周角定理得出∠ABC=∠ADC=90°,∠BAD=∠BCD=90°,即可得出四边形ABCD是矩形;
(2)由AAS证明△BOE≌△COF,得出对应边相等即可.

解答 (1)解:四边形ABCD是矩形.理由如下:
∵AC与BD是圆的直径,
∴∠ABC=∠ADC=90°,∠BAD=∠BCD=90°,
∴四边形ABCD是矩形;
(2)证明:∵BO=CO,
又∵BE⊥AC于E,CF⊥BD于F,
∴∠BEO=∠CFO=90°.
在△BOE和△COF中,$\left\{\begin{array}{l}{∠BEO=∠CFO}&{\;}\\{∠BOE=∠COF}&{\;}\\{OB=OC}&{\;}\end{array}\right.$,
∴△BOE≌△COF(AAS).
∴BE=CF.

点评 本题考查了圆周角定理、矩形的判定、全等三角形的判定与性质;熟练掌握圆周角定理,证明三角形全等是解决问题(2)的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网