ÌâÄ¿ÄÚÈÝ
9£®Èçͼ£¬ÔÚ¾ØÐÎABCD£¨AD£¾AB£©ÖУ¬PΪBC±ßÉϵÄÒ»µã£¬AP=AD£¬¹ýµãP×÷PE¡ÍPA½»CDÓÚE£¬Á¬½ÓAE²¢ÑÓ³¤½»BCµÄÑÓ³¤ÏßÓÚF£®£¨1£©ÇóÖ¤£º¡÷APE¡Õ¡÷ADE£»
£¨2£©ÈôAB=3£¬CP=1£¬ÊÔÇóBP£¬CFµÄ³¤£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬Á¬½áPD£¬ÈôµãMΪAPÉϵ͝µã£¬NΪADÑÓ³¤ÏßÉϵ͝µã£¬ÇÒPM=DN£¬Á¬½áMN½»PDÓÚG£¬×÷MH¡ÍPD£¬´¹×ãΪH£¬ÊÔÎʵ±M¡¢NÔÚÒÆ¶¯¹ý³ÌÖУ¬Ïß¶ÎGHµÄ³¤¶ÈÊÇ·ñ·¢Éú±ä»¯£¿Èô±ä»¯£¬Çë˵Ã÷ÀíÓÉ£¬Èô²»±ä£¬Çó³öGHµÄ³¤£®
·ÖÎö £¨1£©ÏÈÅжϳö¡ÏAPE=¡ÏD=90¡ã£¬¼´¿ÉµÃ³ö½áÂÛ£»
£¨2£©ÏÈÇó³öCD=AB=3£¬½ø¶øÀûÓù´¹É¶¨ÀíÇó³öCE=$\frac{4}{3}$£¬DE=$\frac{5}{3}$£¬ÔÙ¡÷ABP¡×¡÷PCE£¬¼´¿ÉµÃ³öBP=4¼´¿ÉµÃ³ö½áÂÛ£»
£¨3£©ÏÈÅжϳöMI=DN£¬½ø¶øÅжϳö¡÷MGH¡Õ¡÷NGD£¬×îºóÓù´¹É¶¨Àí¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð £¨1£©Ö¤Ã÷£º
¡ßÔÚ¾ØÐÎABCDÖУ¬¡ÏD=90¡ã£¬ÓÖPE¡ÍPA£¬
¡à¡ÏAPE=¡ÏD=90¡ã£¬
ÓÖ¡ßAP=AD£¬AE=AE£¬
¡à¡÷APE¡Õ¡÷ADE
£¨2£©ÓÉ¡÷APE¡Õ¡÷ADEµÃDE=PE
¡ßAB=3£¬
¡àCD=AB=3
¡àÔÚRt¡÷PCEÖУ¬ÉèCE=x£¬ÔòPE=3-x£¬
¡à£¨3-x£©2=x2+12£¬½âµÃx=$\frac{4}{3}$
¡àCE=$\frac{4}{3}$£¬DE=$\frac{5}{3}$
ÓÖ¡ß¡ÏB=¡ÏBCD=¡ÏAPE=90¡ã
¡à¡ÏPEC+¡ÏCPE=90¡ã£¬¡ÏAPB+¡ÏCPE=90¡ã
¡à¡ÏPEC=¡ÏAPB
¡à¡÷ABP¡×¡÷PCE
¡à$\frac{BP}{AB}=\frac{CE}{CP}$£¬µÃBP=4
¡àÔÚRt¡÷ABPÖУ¬AP=AD=5£¬
ÓÖ¡ßAD¡ÎBC
¡à$\frac{CF}{AD}=\frac{CE}{DE}=\frac{4}{5}$
¡àCF=4
£¨3£©Ã»Óб仯H
Èçͼ2£¬![]()
×÷MI¡ÎDN½»PDÓÚI
¡ßAD=AP£¬MI¡ÎDN
¡à¡ÏADP=¡ÏAPD£¬¡ÏADP=¡ÏMIP
¡à¡ÏAPD=¡ÏMIP
¡àMI=PM
ÓÖ¡ßMH¡ÍPD
¡àPH=HI
ÓÖ¡ßPM=DN
¡àMI=DN
¡à¡ÏMGI=¡ÏDGN£¬¡ÏIMG=¡ÏDNG£¬
¡à¡÷MGH¡Õ¡÷NGD
¡àGI=GD
¡àGH=GI+IH=$\frac{1}{2}$PD
¡àÔÚRt¡÷ABPÖУ¬PD=$\sqrt{{3}^{2}+{1}^{2}}$=$\sqrt{10}$£¬
¡àGH=$\frac{\sqrt{10}}{2}$£®
µãÆÀ ´ËÌâÊÇËıßÐÎ×ÛºÏÌ⣬Ö÷Òª¿¼²éÁ˾ØÐεÄÐÔÖÊ£¬È«µÈÈý½ÇÐεÄÅж¨ºÍÐÔÖÊ£¬ÏàËÆÈý½ÇÐεÄÅж¨ºÍÐÔÖÊ£¬¹´¹É¶¨Àí£¬½â£¨1£©µÄ¹Ø¼üÊÇÅжϳö£¬¡ÏAPE=¡ÏD=90¡ã£¬½â£¨2£©µÄ¹Ø¼üÊÇÇó³öCE=$\frac{4}{3}$£¬DE=$\frac{5}{3}$£¬½â£¨3£©µÄ¹Ø¼üÊÇÅжϳöMI=DN£®
| A£® | -22=4 | B£® | £¨-2£©3=8 | C£® | $\root{3}{64}$=4 | D£® | $\sqrt{4}=¡À2$ |
| A£® | 4 | B£® | 2$\sqrt{3}$ | C£® | $\sqrt{6}$ | D£® | $\sqrt{2}$ |