题目内容

(10分) 如图,已知二次函数y=ax2+bx+c的图像过A(2,0),B(0,﹣1)和C(4,5)三点.

(1)求二次函数的解析式;

(2)设二次函数的图像与x轴的另一个交点为D,求点D的坐标;

(3)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.

(1)二次函数的解析式为;(2)点D坐标为(-1,0);

(3)图象见解析,当一次函数的值大于二次函数的值时,x的取值范围是-1<x<4.

【解析】

试题分析:(1)根据二次函数y=ax2+bx+c的图象过A(2,0),B(0,-1)和C(4,5)三点,代入得出关于a,b,c的三元一次方程组,求得a,b,c,从而得出二次函数的解析式;

(2)令y=0,解一元二次方程,求得x的值,从而得出与x轴的另一个交点坐标;

(3)画出图象,再根据图象直接得出答案.

试题解析:(1)∵二次函数y=ax2+bx+c的图象过A(2,0),B(0,-1)和C(4,5)三点,

∴a=,b=-,c=-1,

∴二次函数的解析式为y=x2-x-1;

(2)当y=0时,得x2-x-1=0;

解得x1=2,x2=-1,

∴点D坐标为(-1,0);

(3)图象如图,

当一次函数的值大于二次函数的值时,x的取值范围是-1<x<4.

考点:二次函数与一元二次不等式的关系

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网