题目内容

如图1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm.如果点P由B出发沿BA方向点A匀速运动,同时点Q由A出发沿AC方向向点C匀速运动,它们的速度均为2cm/s.连接PQ,设运动的时间为t(单位:s)(0≤t≤4).解答下列问题:
(1)当t=
 
 时,PQ∥BC.
(2)如图2,把△AQP沿AP翻折,当t=
 
时,得到的三角形与原三角形组成的四边形为菱形.
考点:相似形综合题
专题:
分析:(1)证△APQ∽△ABC,推出
AP
AB
=
AQ
AC
,代入得出
10-2t
10
=
2t
8
,求出方程的解即可
(2)首先根据菱形的性质及相似三角形比例线段关系,求得PQ、QD和PD的长度;然后在Rt△PQD中,求得时间t的值.
解答:解:(1)由题意知:BP=2t,AP=10-2t,AQ=2t,
∵PQ∥BC,
∴△APQ∽△ABC,
AP
AB
=
AQ
AC

10-2t
10
=
2t
8

解得 t=
20
9

即当t为
20
9
s时,PQ∥BC.

(2)假设存在时刻t,使四边形AQPQ′为菱形,则有AQ=PQ=BP=2t.
∵△ABC中,AB=10cm,AC=8cm,BC=6cm,
∴AB2=AC2+BC2=100,
∴∠C=90°.
如图2所示,过P点作PD⊥AC于点D,则有PD∥BC,
AD
AQ
=
AP
AB
,即
10-2t
10

解得:PD=6-
6
5
t,AD=8-
8
5
t,
∴QD=AD-AQ=8-
8
5
t-2t=8-
18
5
t.
在Rt△PQD中,由勾股定理得:QD2+PD2=PQ2
即(8-
18
5
t)2+(6-
6
5
t)2=(2t)2
化简得:13t2-90t+125=0,
解得:t1=5,t2=
25
13

∵t=5s时,AQ=10cm>AC,不符合题意,舍去,
∴t=
25
13

故答案是:(1)
20
9
;(2)
25
13
点评:本题是非常典型的动点型综合题,全面考查了相似三角形线段比例关系、菱形的性质、勾股定理及其逆定理、一元一次方程的解法,涉及的考点众多,计算量偏大,有一定的难度.本题考查知识点非常全面,是一道测试学生综合能力的好题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网