题目内容
19.某车间100个工人,每人平均每天可加工甲零件18个或乙零件24个,要使每天加工的甲、乙零件配套(4个甲零件配3个乙零件),应如何分配工人加工甲零件和乙零件?分析 设分配x人加工甲零件,(100-x)人加工乙零件,根据4个甲零件配3个乙零件,列出方程求解即可.
解答 解:设分配x人加工甲零件,(100-x)人加工乙零件,根据题意得:
18x×3=(100-x)×24×4,
解得:x=64,
则100-64=36(人),
答:分配64人加工甲零件,36人加工乙零件.
点评 此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.
练习册系列答案
相关题目
7.如果(a-2)0=1,那么a的取值范围是( )
| A. | a>2 | B. | a=2 | C. | a<2 | D. | a≠2 |
4.若x=3是方程ax=5的解,则x=3也是方程( )
| A. | 3ax=15的解 | B. | ax-3=-2的解 | C. | ax-0.5=$\frac{11}{2}$的解 | D. | $\frac{1}{2}$ax=-10的解 |
8.计算$\sqrt{\frac{2}{3}}$×$\sqrt{\frac{3}{18}}$÷$\sqrt{12}$的值为( )
| A. | $\frac{\sqrt{3}}{18}$ | B. | $\frac{\sqrt{3}}{6}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{3\sqrt{3}}{4}$ |