题目内容

如图,在Rt△ABC中,∠ACB=90°,D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,连结DE并延长,与BC的延长线交于点F.

(1)求证:BD=BF;

(2)若BC=6,AD=4,求sinA的值.

(1)证明见解析; (2). 【解析】试题分析:(1)连接OE,由AC为圆O的切线,利用切线的性质得到OE⊥AC,再由BC⊥AC,得到OE∥BC,根据平行线的性质可得∠OED=∠F,又因OD= OE,根据等腰三角形的性质可得∠ODE=∠OED ,所以∠ODE=∠F ,即可得BD=BF;(2)设⊙O的半径为r,由OE∥BC可得△AOE∽△ABC ,根据相似三角形的性质求得半径r的长,在Rt△A...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网