题目内容

12.如图,△ABC中,∠C=90°,BC=9,AD平分∠BAC,过点D作DE⊥AB于E,测得BE=3,则△BDE的周长是(  )
A.15B.12C.9D.6

分析 由△ABC中,∠C=90°,AD平分∠BAC,过点D作DE⊥AB于E,根据角平分线的性质,即可得DE=CD,继而可求得△BDE的周长是:BE+BC,则可求得答案.

解答 解:∵△ABC中,∠C=90°,
∴AC⊥CD,
∵AD平分∠BAC,DE⊥AB,
∴DE=CD,
∵BC=9,BE=3,
∴△BDE的周长是:BE+BD+DE=BE+BD+CD=BE+BC=3+9=12.
故选B.

点评 此题考查了角平分线的性质.此题比较简单,注意角平分线的性质:角平分线上的点到角的两边的距离相等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网