题目内容

18.某同学在计算3(4+1)(42+1)时,把3写成(4-1)后,发现可以连续运用两数和乘以这两数差公式计算:
3(4+1)(42+1)=(4-1)(4+1)(42+1)=(42-1)(42+1)=162-1.
(1)请借鉴该同学的经验,计算:(1+$\frac{1}{2}$)(1+$\frac{1}{{2}^{2}}$)(1+$\frac{1}{{2}^{4}}$)(1+$\frac{1}{{2}^{8}}$)+$\frac{1}{{2}^{15}}$=2;
(2)请逆用平方差公式计算:(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{4}^{2}}$)…(1-$\frac{1}{1{0}^{2}}$)

分析 (1)把原式前面乘2×(1-$\frac{1}{2}$),进一步利用平方差公式计算即可;
(2)利用平方差公式分解,进一步计算约分得出答案即可.

解答 解:(1)原式=2×(1-$\frac{1}{2}$)(1+$\frac{1}{2}$)(1+$\frac{1}{{2}^{2}}$)(1+$\frac{1}{{2}^{4}}$)(1+$\frac{1}{{2}^{8}}$)+$\frac{1}{{2}^{15}}$
=2×(1-$\frac{1}{{2}^{2}}$)(1+$\frac{1}{{2}^{2}}$)(1+$\frac{1}{{2}^{4}}$)(1+$\frac{1}{{2}^{8}}$)+$\frac{1}{{2}^{15}}$
=2×(1-$\frac{1}{{2}^{4}}$)(1+$\frac{1}{{2}^{4}}$)(1+$\frac{1}{{2}^{8}}$)+$\frac{1}{{2}^{15}}$
=2×(1-$\frac{1}{{2}^{8}}$)(1+$\frac{1}{{2}^{8}}$)+$\frac{1}{{2}^{15}}$
=2×(1-$\frac{1}{{2}^{16}}$)+$\frac{1}{{2}^{15}}$
=2-$\frac{1}{{2}^{15}}$+$\frac{1}{{2}^{15}}$
=2.
(2)原式=(1-$\frac{1}{2}$)(1+$\frac{1}{2}$)(1-$\frac{1}{3}$)(1+$\frac{1}{3}$)(1-$\frac{1}{4}$)(1+$\frac{1}{4}$)…(1-$\frac{1}{10}$)(1+$\frac{1}{10}$)
=$\frac{1}{2}$×$\frac{3}{2}$×$\frac{2}{3}$×$\frac{4}{3}$×$\frac{3}{4}$×$\frac{5}{4}$×…×$\frac{9}{10}$×$\frac{11}{10}$
=$\frac{1}{2}$×$\frac{11}{10}$
=$\frac{11}{20}$.

点评 此题考查平方差公式,掌握平方差公式的灵活运用是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网