ÌâÄ¿ÄÚÈÝ
11£®£¨1£©ÓÃÖ±³ßºÍÔ²¹æ×÷¡ÏAOBµÄƽ·ÖÏßOP£®£¨²»Ð´×÷·¨£¬±£Áô×÷ͼºÛ¼££©
£¨2£©½áºÏͼÐΣ¬²Â²â¡ÏPOQÓë¡ÏAOCÖ®¼äµÄÊýÁ¿¹ØÏµ£¬È»ºóÖð²½Ìî¿Õ£®
½â£º¡ÏPOQÓë¡ÏAOCÖ®¼äµÄÊýÁ¿¹ØÏµÊÇ£º¡ÏPOQ=$\frac{1}{2}¡ÏAOC$£®
ÒòΪOPÊÇ¡ÏAOBµÄƽ·ÖÏߣ¬
ËùÒÔ¡ÏPOB=$\frac{1}{2}$¡ÏAOB£¬
ͬÀí£¬¡ÏBOQ=$\frac{1}{2}$¡ÏBOC£¬
ÓÚÊÇ¡ÏPOQ=¡ÏPOB+¡ÏBOQ=$\frac{1}{2}$¡ÏAOB+$\frac{1}{2}$¡ÏBOC=$\frac{1}{2}$£¨¡ÏAOB+¡ÏBOC£©=$\frac{1}{2}$¡ÏAOC£®
·ÖÎö £¨1£©¸ù¾Ý½Çƽ·ÖÏߵij߹æ×÷ͼ¼´¿ÉµÃ£»
£¨2£©ÓÉOPƽ·Ö¡ÏAOBÖª$¡ÏPOB=\frac{1}{2}$¡ÏAOB¡¢ÓÉOQƽ·Ö¡ÏBOCÖª¡ÏBOQ=$\frac{1}{2}$¡ÏBOC£¬¸ù¾Ý¡ÏPOQ=¡ÏPOB+¡ÏBOQ¿ÉµÃ´ð°¸£®
½â´ð ½â£º£¨1£©Èçͼ£¬OP¼´ÎªËùÇó£º![]()
£¨2£©¡ÏPOQÓë¡ÏAOCÖ®¼äµÄÊýÁ¿¹ØÏµÊÇ£º¡ÏPOQ=$\frac{1}{2}¡ÏAOC$£¬
ÒòΪOPÊÇ¡ÏAOBµÄƽ·ÖÏߣ¬
ËùÒÔ$¡ÏPOB=\frac{1}{2}$¡ÏAOB£¬
ͬÀí£¬$¡ÏBOQ=\frac{1}{2}$¡ÏBOC£¬
ÓÚÊÇ¡ÏPOQ=¡ÏPOB+¡ÏBOQ=$\frac{1}{2}$¡ÏAOB$+\frac{1}{2}$¡ÏBOC=$\frac{1}{2}$£¨¡ÏAOB+¡ÏBOC£©=$\frac{1}{2}$¡ÏAOC£¬
¹Ê´ð°¸Îª£º¡ÏPOB¡¢¡ÏBOQ¡¢¡ÏAOB¡¢¡ÏBOC¡¢¡ÏAOB¡¢¡ÏBOC¡¢¡ÏAOC£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²é×÷ͼ-³ß¹æ×÷ͼ¼°½Çƽ·ÖÏߵ͍Ò壬½âÌâµÄ¹Ø¼üÊÇÊìÁ·ÕÆÎÕ½ÇÆ½·ÖÏߵij߹æ×÷ͼ¼°½Çƽ·ÖÏߵ͍ÒåºÍÐÔÖÊ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
1£®ÏÂÁÐʽ×ÓÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | x-£¨y+z£©=x+y-z | B£® | -£¨x-y-z£©=-x+y-z | ||
| C£® | a-2£¨b+c£©=a-2b-c | D£® | -£¨a-b£©-2£¨-c£©=-a+b+2c |