题目内容

17.操作与实践
(1)如图1,已知△ABC,过点A画一条平分三角形面积的直线;(简述作图过程)
(2)如图2,已知l1∥l2,点E,F在l1上,点G,H在l2上,试说明△EGO与△FHO的面积相等;
(3)如图3,点M在△ABC的边上,过点M画一条平分三角形面积的直线.(简述作图过程)

分析 (1)作三角形ABC的中线AD,根据三角形面积公式可判断直线AD平分△ABC的面积;
(2)利用两平行线的距离对应可判断点E和点F到GH的距离相等,根据三角形面积公式可判断S△EGH=S△FGH,然后都减去△OGH的面积即可得到△EGO与△FHO的面积相等;
(3)先作中线AD,连结MD,然后过A点作MD的平行线交BC于N,则利用(1)、(2)的结论可判断MN平分△ABC的面积.

解答 解:(1)如图(1),中线AD所在的直线为所作;

因为点为AD的中点,
所以AD=CD,
所以S△ABD=S△ACD
(2)如图(2),

∵l1∥l2
∴S△EGH=S△FGH
即S△EGO+S△OGH=S△FOH+S△OGH
∴S△EGO=S△FOH
(3)如图3,MN为所作.

点评 本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了三角形面积公式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网