题目内容


类比、转化、分类讨论等思想方法和数学基本图形在数学学习和解题中经常用到,如下是一个案例,请补充完整。

原题:如图1,在⊙O中,MN是直径,ABMN于点B,CDMN于点D,AOC=90°,AB=3,CD=4,则BD=          

⑴尝试探究:如图2,在⊙O中,MN是直径,AB⊥MN于点BCDMN于点D,点EMN上,∠AEC=90°,AB=3,BD=8,BEDE=1:3,则CD=           (试写出解答过程)。

⑵类比延伸:利用图3,再探究,当AC两点分别在直径MN两侧,且ABCDABMN于点BCDMN于点D,∠AOC=90°时,则线段ABCDBD满足的数量关系为      

⑶拓展迁移:如图4,在平面直角坐标系中,抛物线经过Am,6),Bn,1)两点(其中0<m<3),且以y轴为对称轴,且∠AOB=90°,①求mn的值;②当S△AOB=10时,求抛物线的解析式。


解:⑴原题:∵AB⊥MN,CD⊥MN,

∴∠ABO=∠ODC=90° ∠BAO+∠AOB=90°

∵∠AOC=90°    ∴∠DOC+∠AOB=90°

∴∠BAO=∠DOC  又∵OA=OC ∴△AOB≌△ODC(AAS)

∴OD=AB=3,OB=CD=4,∴BD=OB+OD=7  

⑵尝试探究:∵AB⊥MN,CD⊥MN,∴∠ABE=∠CDE=90°

∠BAE+∠AEB=90°∵∠AEC=90°∴∠DEC+∠AEB=90°

∴∠BAE=∠DEC ∴△ABE∽△EDC  

∵AB=3,BD=8,BE:DE=1:3,

∴BE=2,DE=6 ∴ ∴CD=4  

⑶类比延伸:如图3(a)CD=AB+BD;  

如图3(b)AB=CD+BD ………2分

 


⑷拓展迁移:①作轴于C点,轴于D点,点坐标分别为,∴,又∵∠AOB=90°

∴∠BCO=∠ODA=90°,∠OBC=∠AOD ∴

。………2分

②由①得,,又,∴

坐标为(2,6),B坐标为(-3,1),代入得抛物线解析式为。………2分


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网