题目内容

4.如图,在四边形ABCD中,CA平分∠DCB,∠ADC=∠BAC=90°.
(1)求证:AC2=BC•DC;
(2)若BC=5,DC=1,求线段AD的长.

分析 (1)由CA平分∠DCB,可推得∠ACB=∠ACD,又由于∠ADC=∠BAC,可证得△ABC∽△DAC,根据相似三角形的性质即可推出结论;
(2)由(1)可推出AC2=5×1=5,根据勾股定理可求AD.

解答 (1)证明:∵CA平分∠DCB,
∴∠ACB=∠ACD,
∵∠ADC=∠BAC=90°,
∴△ABC∽△DAC,
$\frac{AC}{DC}=\frac{BC}{AC}$,
∴AC2=BC•DC;

(2)解:由(1)知,AC2=BC•DC,
∵BC=5,DC=1,
∴AC2=5×1=5,
∵∠ADC=90°,
AD=$\sqrt{A{C}^{2}-D{C}^{2}}$=$\sqrt{5-{1}^{2}}$=2.

点评 本题主要考查了角平分线的定义,相似三角形的判定和性质,勾股定理,熟练掌握相似三角形的判定和性质是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网