题目内容

4.如图,在正方形ABCD外侧作直线DE,点C关于直线DE的对称点为M,连接CM,AM,其中AM交直线DE于点N.若45°<∠CDE<90°,当MN=3,AN=4时,正方形ABCD的边长为(  )
A.$\sqrt{7}$B.5C.5$\sqrt{2}$D.$\frac{5}{2}$$\sqrt{2}$

分析 连接CN、DM、AC,根据轴对称的性质可得CN=MN,CD=DM,∠DCN=∠DMN,根据正方形的四条边都相等可得AD=CD,然后求出AD=DM,根据等边对等角可得∠DAM=∠DMN,从而得到∠DCN=∠DAM,再求出∠ACN+∠CAN=90°,判断出△ACN是直角三角形,然后利用勾股定理列式求出AC,再根据正方形的边长等于对角线的$\frac{\sqrt{2}}{2}$倍求解.

解答 解:如图所示,连接CN、DM、AC,
∵点C关于直线DE的对称点为M,
∴CN=MN,CD=DM,∠DCN=∠DMN,
在正方形ABCD中,AD=CD,
∴AD=DM,
∴∠DAM=∠DMN,
∴∠DCN=∠DAM,
∵∠ACN+∠CAN=∠BCD-∠DCN+∠CAD+∠DAM=∠BCD+∠CAD=90°,
∴∠ANC=180°-90°=90°,
∴△ACN是直角三角形,
由勾股定理得,AC=$\sqrt{A{N}^{2}+C{N}^{2}}$=$\sqrt{{4}^{2}+{3}^{2}}$=5,
∴正方形ABCD的边长=$\frac{\sqrt{2}}{2}$AC=$\frac{\sqrt{2}}{2}$×5=$\frac{5}{2}$$\sqrt{2}$.
故选D.

点评 本题考查了正方形的性质,轴对称的性质,等边对等角的性质,勾股定理,作辅助线构造出等腰三角形与直角三角形是解题的关键,难点在于把AN、MN的长度以及正方形的对角线组成直角三角形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网