题目内容
19.在同一直角坐标系中,画出二次函数y=-$\frac{1}{2}$(x+1)2,y=-$\frac{1}{2}$(x-1)2的图象,并分别指出它们的开口方向、对称轴和顶点.分析 根据描点法,可得函数图象,根据二次项系数,可得开口方向,根据对称轴的定义,顶点坐标的定义,可得答案.
解答 解:在同一直角坐标系中,画出二次函数y=-$\frac{1}{2}$(x+1)2,y=-$\frac{1}{2}$(x-1)2的图象,
,
y=-$\frac{1}{2}$(x+1)2开口向下,对称轴是x=-1,顶点(-1,0);
y=-$\frac{1}{2}$(x-1)2开口向下,对称轴是x=1,顶点(1,0).
点评 本题考查了二次函数图象,利用描点法得出函数图象,二次函数的性质得出对称轴、顶点坐标,开口方向.
练习册系列答案
相关题目
10.如果一个多边形的各边都相等,且各内角也都相等,那么这个多边形就叫做正多边形.如图,就是一组正多边形,观察每个正多边形中∠α的变化情况,解答下列问题:

(1)将下面的表格补充完整:
(2)根据规律,是否存在一个正多边形,其中的∠α=21°?若存在,请求出n的值,若不存在,请说明理由.
(1)将下面的表格补充完整:
| 正多边形边数 | 3 | 4 | 5 | 6 | … | n |
| ∠α的度数 | 60° | 45° | 36° | 30° | … | ($\frac{180}{n}$)° |
7.
如图,已知△ABC的周长是1,连接△ABC三边的中点构成第二个三角形,再连接第二个三角形三边的中点构成第三个三角形…依此类推,则第2015个三角形的周长为( )
| A. | $\frac{1}{2015}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{{2}^{2015}}$ | D. | $\frac{1}{{2}^{2014}}$ |