题目内容
8.一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.
(1)求证:CE=AD;
(2)当D在AB中点时.
①求证:四边形BECD是菱形;
②当∠A为多少度时,四边形BECD是正方形?说明理由.
分析 (1)证出AC∥DE,得出四边形ADEC是平行四边形,即可得出结论;
(2)①先证出BD=CE,得出四边形BECD是平行四边形,再由直角三角形斜边上的中线性质得出CD=$\frac{1}{2}$AB=BD,即可得出四边形BECD是菱形;
②当∠A=45°时,△ABC是等腰直角三角形,由等腰三角形的性质得出CD⊥AB,即可得出四边形BECD是正方形.
解答
(1)证明:∵DE⊥BC,
∴∠DFB=90°.
∵∠ACB=90°,
∴∠ACB=∠DFB,
∴AC∥DE.
∵MN∥AB,即CE∥AD,
∴四边形ADEC是平行四边形,
∴CE=AD;
(2)①证明:∵D为AB中点,
∴AD=BD.
∵CE=AD,
∴BD=CE.
∵BD∥CE,
∴四边形BECD是平行四边形.
∵∠ACB=90°,D为AB中点,
∴CD=BD,
∴四边形BECD是菱形;
②当∠A=45°时,四边形BECD是正方形.
理由如下:∵∠ACB=90°,∠A=45°,
∴∠ABC=∠A=45°,
∴AC=BC.
∵D为BA中点,
∴CD⊥AB,
∴∠CDB=90°.
∵四边形BECD是菱形,∠CDB=90°,
∴四边形BECD是正方形.
点评 本题考查了平行四边形的判定与性质、正方形的判定、菱形的判定、直角三角形斜边上的中线性质;熟练掌握平行四边形的判定与性质,并能进行推理论证是解决问题的关键.
练习册系列答案
相关题目
13.
某校为更好的开展“冬季趣味运动会”活动,随机在各年级抽查了部分学生,了解他们最喜爱的趣味运动项目类型(跳长绳、踢毽子、背夹球、拔河共四类),并将统计结果绘制成如图不完整的频数分布表.
根据以上信息回答下列问题:
最喜爱的趣味运动项目类型频数分布表:
(1)直接写出a=0.25,b=40;
(2)利用频数分布表中的数据,在图中绘制扇形统计图(注明项目、百分比、圆心角);
(3)若全校共有学生1200名,估计该校最喜爱背夹球和拔河的学生大约有多少人?
根据以上信息回答下列问题:
最喜爱的趣味运动项目类型频数分布表:
| 项目类型 | 频数 | 频率 |
| 跳长绳 | 25 | a |
| 踢毽子 | 20 | 0.2 |
| 背夹球 | b | 0.4 |
| 拔河 | 15 | 0.15 |
(2)利用频数分布表中的数据,在图中绘制扇形统计图(注明项目、百分比、圆心角);
(3)若全校共有学生1200名,估计该校最喜爱背夹球和拔河的学生大约有多少人?