题目内容
17.| A. | 25° | B. | 30° | C. | 35° | D. | 40° |
分析 分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,由对称的性质得出PM=DM,OP=OC,∠COA=∠POA;PN=CN,OP=OD,∠DOB=∠POB,得出∠AOB=$\frac{1}{2}$∠COD,证出△OCD是等边三角形,得出∠COD=60°,即可得出结果.
解答 解:分别作点P关于OA、OB的对称点C、D,连接CD,![]()
分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:
∵点P关于OA的对称点为D,关于OB的对称点为C,
∴PM=DM,OP=OD,∠DOA=∠POA;
∵点P关于OB的对称点为C,
∴PN=CN,OP=OC,∠COB=∠POB,
∴OC=OP=OD,∠AOB=$\frac{1}{2}$∠COD,
∵△PMN周长的最小值是5cm,
∴PM+PN+MN=5,
∴DM+CN+MN=5,
即CD=5=OP,
∴OC=OD=CD,
即△OCD是等边三角形,
∴∠COD=60°,
∴∠AOB=30°;
故选:B.
点评 本题考查了轴对称的性质、最短路线问题、等边三角形的判定与性质;熟练掌握轴对称的性质,证明三角形是等边三角形是解决问题的关键.
练习册系列答案
相关题目
8.在平面直角坐标系中,已知点P的坐标是(6,8),则OP的长为( )
| A. | $\sqrt{7}$ | B. | 8 | C. | 9 | D. | 10 |
5.某校开展校园“美德少年”评选活动,共有“助人为乐”,“自强自立”、“孝老爱亲”,“诚实守信”四种类别,每位同学只能参评其中一类,评选后,把最终入选的20位校园“美德少年”分类统计,制作了如下统计表,后来发现,统计表中前两行的数据都是正确的,后两行的数据中有一个是错误的.
根据以上信息,解答下列问题:
(1)统计表中的a=4,b0.15;
(2)统计表后两行错误的数据是0.32,该数据的正确值是0.30;
(3)校园小记者决定从A,B,C三位“自强自立美德少年”中随机采访两位,用画树状图或列表的方法,求A,B都被采访到的概率.
| 类别 | 频数 | 频率 |
| 助人为乐美德少年 | a | 0.20 |
| 自强自立美德少年 | 3 | b |
| 孝老爱亲美德少年 | 7 | 0.35 |
| 诚实守信美德少年 | 6 | 0.32 |
(1)统计表中的a=4,b0.15;
(2)统计表后两行错误的数据是0.32,该数据的正确值是0.30;
(3)校园小记者决定从A,B,C三位“自强自立美德少年”中随机采访两位,用画树状图或列表的方法,求A,B都被采访到的概率.